Answer: The lower temperature reduces molecule speeds, reducing the number of effective collisions.
Explanation:
<span> calorimeter. 4 c6h5nh2(l) + 35 o2(g) → 24 co2(g) + 14 h2o(g) + 4 no2(g)</span>
5.732 grams of AgCl is formed when 0.200 L of 0.200 M AGNO3 reacts with an excess of CaCl2.
Explanation:
The balanced equation:
2 AgNO3(aq) + CaCl2(aq) -----> 2 AgCl(s) + Ca(NO3)2(aq)
data given:
volume of AgNO3 = 0.2 L
molarity of AgNO3 = 0.200 M
atomic weight of AgCl= 143.32 gram/mole
from the formula, number of moles can be calculated
Molarity = 
number of moles of AgNO3 = 0.04
From the reaction:
2 moles of AgNO3 reacts to form 2 moles of AgCl
0.04 moles of AgNO3 reacts to form x mole of AgCl
= 
= 0.04 moles of AgCl is formed
mass of AgCl formed is calculated by multiplying number of moles with atomic mass of AgCl
mass of AgCl = 0.04 x 143.32
= 5.732 grams of AgCl is formed.
The model represents Photosynthesis. Light, carbon dioxide, and water are the reactants. The products will be Sugar and Oxygen. Photosynthesis releases oxygen and glucose. Which is the energy that living things need to survive.