Answer:
12r - 8 - 12
you have to combine like terms. below i have bolded the like terms:
12r - 8 - 12
together it combines to:
12r - 20
According to the secant-tangent theorem, we have the following expression:
![(x+3)^2=10.8(19.2+10.8)](https://tex.z-dn.net/?f=%28x%2B3%29%5E2%3D10.8%2819.2%2B10.8%29)
Now, we solve for <em>x</em>.
![\begin{gathered} x^2+6x+9=10.8(30) \\ x^2+6x+9=324 \\ x^2+6x+9-324=0 \\ x^2+6x-315=0 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%5E2%2B6x%2B9%3D10.8%2830%29%20%5C%5C%20x%5E2%2B6x%2B9%3D324%20%5C%5C%20x%5E2%2B6x%2B9-324%3D0%20%5C%5C%20x%5E2%2B6x-315%3D0%20%5Cend%7Bgathered%7D)
Then, we use the quadratic formula:
![x_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Where a = 1, b = 6, and c = -315.
![\begin{gathered} x_{1,2}=\frac{-6\pm\sqrt[]{6^2-4\cdot1\cdot(-315)}}{2\cdot1} \\ x_{1,2}=\frac{-6\pm\sqrt[]{36+1260}}{2}=\frac{-6\pm\sqrt[]{1296}}{2} \\ x_{1,2}=\frac{-6\pm36}{2} \\ x_1=\frac{-6+36}{2}=\frac{30}{2}=15 \\ x_2=\frac{-6-36}{2}=\frac{-42}{2}=-21 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B6%5E2-4%5Ccdot1%5Ccdot%28-315%29%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B36%2B1260%7D%7D%7B2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B1296%7D%7D%7B2%7D%20%5C%5C%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm36%7D%7B2%7D%20%5C%5C%20x_1%3D%5Cfrac%7B-6%2B36%7D%7B2%7D%3D%5Cfrac%7B30%7D%7B2%7D%3D15%20%5C%5C%20x_2%3D%5Cfrac%7B-6-36%7D%7B2%7D%3D%5Cfrac%7B-42%7D%7B2%7D%3D-21%20%5Cend%7Bgathered%7D)
<h2>Hence, the answer is 15 because lengths can't be negative.</h2>
Answer:
44
Step-by-step explanation:
A tree diagram can be drawn for a clearer understanding. The branches of the tails can be ignored since we are not concerned about that. To find the probability along the branches, we just have to multiply the probabilities of each branch, giving you an answer of 1/128