negatively skewed
Step-by-step explanation:
The long "tail" is on the negative side of the peak. Or simply put, it is skewed to the left.
Hope this helps.
To round numbers to the nearest ten thousand, make the numbers whose last four digits are 0001 through 4999 into the next lower number that ends in 0000.this hope it helps
hmmm first off let's convert the √3 +i to trigonometric form, and then use De Moivre's root theorem, bearing in mind that √3 and i or 1i are both positive, meaning we're on the I Quadrant.
![\bf (\stackrel{a}{\sqrt{3}}~,~\stackrel{b}{1i})\qquad \begin{cases} r=&\sqrt{(\sqrt{3})^2+1^2}\\ &\sqrt{3+1}\\ &2\\ \theta =&tan^{-1}\left( \frac{1}{\sqrt{3}}\right)\\\\ &tan^{-1}\left( \frac{\sqrt{3}}{3} \right)\\ &\frac{\pi }{6} \end{cases}~\hfill \implies ~\hfill 2\left[ cos\left( \frac{\pi }{6}\right) +i~sin\left( \frac{\pi }{6}\right) \right]](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Ba%7D%7B%5Csqrt%7B3%7D%7D~%2C~%5Cstackrel%7Bb%7D%7B1i%7D%29%5Cqquad%20%5Cbegin%7Bcases%7D%20r%3D%26%5Csqrt%7B%28%5Csqrt%7B3%7D%29%5E2%2B1%5E2%7D%5C%5C%20%26%5Csqrt%7B3%2B1%7D%5C%5C%20%262%5C%5C%20%5Ctheta%20%3D%26tan%5E%7B-1%7D%5Cleft%28%20%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D%5Cright%29%5C%5C%5C%5C%20%26tan%5E%7B-1%7D%5Cleft%28%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%20%5Cright%29%5C%5C%20%26%5Cfrac%7B%5Cpi%20%7D%7B6%7D%20%5Cend%7Bcases%7D~%5Chfill%20%5Cimplies%20~%5Chfill%202%5Cleft%5B%20cos%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%2Bi~sin%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%5Cright%5D)
![\bf ~\dotfill\\\\ \qquad \textit{power of two complex numbers} \\\\\ [\quad r[cos(\theta)+isin(\theta)]\quad ]^n\implies r^n[cos(n\cdot \theta)+isin(n\cdot \theta)] \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~%5Cdotfill%5C%5C%5C%5C%20%5Cqquad%20%5Ctextit%7Bpower%20of%20two%20complex%20numbers%7D%20%5C%5C%5C%5C%5C%20%5B%5Cquad%20r%5Bcos%28%5Ctheta%29%2Bisin%28%5Ctheta%29%5D%5Cquad%20%5D%5En%5Cimplies%20r%5En%5Bcos%28n%5Ccdot%20%5Ctheta%29%2Bisin%28n%5Ccdot%20%5Ctheta%29%5D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \left[ 2\left[ cos\left( \frac{\pi }{6}\right) +i~sin\left( \frac{\pi }{6}\right) \right] \right]^3\implies 2^3\left[ cos\left( 3\cdot \frac{\pi }{6}\right) +i~sin\left( 3\cdot \frac{\pi }{6}\right) \right] \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill 8\left[cos\left( \frac{\pi }{2} \right) +i~sin\left( \frac{\pi }{2} \right) \right]~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%5B%202%5Cleft%5B%20cos%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%2Bi~sin%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%5Cright%5D%20%5Cright%5D%5E3%5Cimplies%202%5E3%5Cleft%5B%20cos%5Cleft%28%203%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%2Bi~sin%5Cleft%28%203%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%208%5Cleft%5Bcos%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%5Cright%29%20%2Bi~sin%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%5Cright%29%20%5Cright%5D~%5Chfill)
Answer:
15x 1y
Step-by-step explanation:
im smart
The answer is choice D
Check out the attached image to see the steps on how to get that answer
Notice how I'm marking the rows and columns, and then multiplying the corresponding values together. Also make note of the color-coding.