Answer: 54 cm²
Step-by-step explanation: In this problem, we're asked to find the area of the trapezoid shown. A trapezoid is a quadrilateral with one pair of parallel sides.
The formula for the area of a trapezoid is shown below.

The <em>b's</em> represent the bases which are the parallel sides and <em>h</em> is the height.
So in the trapezoid shown, the bases are 6 cm and 12 cm and the height is 6 cm. Plugging this information into the formula, we have
.
Next, the order of operations tell us that we must simplify inside the parentheses first. 6 cm + 12 cm is 18 cm and we have
.
is 9 cm and we have 9 cm · 6 cm of 54 cm²
So the area of the trapezoid shown is 54 cm².
Answer:
Symmetry is the property of an object to retain its shape even if it is turned or turned.
The three corporate logos are McDonald, Shell, Snapcaht
McDonald company logo is symmetrical and it is a reflective symmetry.
Shell logo is symmetrical and it is also reflective symmetry.
Snaphcat logo is symmetrical and it is also reflective symmetry.
9514 1404 393
Answer:
64r -48r -144
Step-by-step explanation:
The January cost expression is ...
62p -48p -144 -432 = profit
The cost is identified as having 3 components, so the profit will have 4 components:
(selling price)×p - ((cost per unit)×p +(fixed monthly cost)) -(first month startup cost) = profit
Comparing this to the given equation, we identify the components as ...
selling price = 62
cost per unit = 48
fixed monthly cost = 144
first month startup cost = 432
We note that 432 = 3×144, so is consistent with the description of startup costs.
Increasing the selling price by $2 will raise it from 62 to 64. In February, the initial month startup cost disappears, so the profit equation becomes ...
(selling price)×r - ((cost per unit)×r +(fixed monthly cost)) = profit
64r -48r -144 = profit
change 20 in to ft
20/12 = 1 2/3 ft
4 ft x ft
------- = ---------------
5 /3 ft shadow 120 ft
using cross products
4 * 120 = 5/3 x
480 = 5/3 x
multiply each side by 3/5
480 * 3/5 = x
288 ft
A "solution" is where the graph crosses the
x-axis so while the quadratic has no real solutions, the straight line passing through it does as it intersects the x-axis at x=-2.
Hope this helps! :)