It has become somewhat fashionable to have students derive the Quadratic Formula themselves; this is done by completing the square for the generic quadratic equation ax2 + bx + c = 0. While I can understand the impulse (showing students how the Formula was invented, and thereby providing a concrete example of the usefulness of abstract symbolic manipulation), the computations involved are often a bit beyond the average student at this point.
Find the median of each set:-
Median is middle number of a data set. If a data set has an odd number of numbers then the median is the middle number when ordered form least to greatest but if its an even number you have to find the mean for the middle 2 numbers when ordered for least to greatest.
A.
1.2, 2.4, 3.2, 3.2, 3.6, 4.0, 4.1, 4.7
Even numbers = 8
3.2 + 3.6 = 6.8
6.8 ÷ 2 =
Median = 3.4
So this shows that A isn't the answer because the median of A is 3.4, not 3.2.
B.
1.6, 2.8, 2.9, 3.1, 3.3, 3.6, 4.2, 4.5
Even numbers = 8
3.1 + 3.3 = 6.4
6.4 ÷ 2 = 3.2
Median = 3.2
<span>So this shows that B is the answer because the median of B is 3.2.
C.
1.8, 2.0, 2.0, 2.2, 3.2, 4.7, 4.8, 4.9
</span>
Even numbers = 8
2.2 + 3.2 = 5.4
5.4 ÷ 2 = 2.7
Median = 2.7
<span>So this shows that C isn't the answer because the median of C is 2.7, not 3.2.
</span>
D.
1.4, 1.7, 2.9, 3.0, 3.1, 3.2, 3.2, 3.2, 4
Odd numbers = 9
Median = 3.1
<span>So this shows that D isn't the answer because the median of D is 3.1, not 3.2.
</span>
The stem and leaf plot which median is 3.2 is B.
Answer:
i dont know what it means by expand but i will simplify it
it would simplify to 16x-18
Step-by-step explanation:
5(2x-1) + 2(3x-6)
10x-5+6x-12
10x+6x-5-12
16x-18
6w=30; divide 30 by 6 to the w by itself; the answer is 5