Answer:
Explanation has been given below.
Explanation:
- A buffer consists of either of a weak acid along with it's conjugate base or a weak base along with it's conjugate acid.
- Let's consider a buffer consists of a weak acid along with it's conjugate base
- If we add an acid to this buffer then conjugate base gets protonated and converted to corresponding weak acid. So effect of addition of acid gets neutralized by forming weak acid rather than increase in concentration of proton in solution.
- If we add a base to this buffer then weak acid gets converted to corresponding conjugate base. So effect of addition of base gets neutralized by forming conjugate base rather than in crease in concentration of hydroxyl ion in solution.
Answer:
Abrasion
Explanation:
Here's an example, strong winds on a beach where some rocks are cause the sand to rub against the rocks, causing heat and eventually crack and destroy the rock. The ice of glaciers can also break down rocks when rocks are frozen inside it, and that's cooling.
<u>Answer:</u> The standard change in Gibbs free energy for the given reaction is 4.33 kJ/mol
<u>Explanation:</u>
For the given chemical equation:

The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

To calculate the standard Gibbs free energy, we use the relation:

where,
= standard Gibbs free energy
R = Gas constant = 
T = temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 0.174
Putting values in above equation, we get:

Hence, the standard change in Gibbs free energy for the given reaction is 4.33 kJ/mol
It’s joe mama mamamamamammamamama ammamamamammama