1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marta [7]
3 years ago
13

(6z 2 - 4z + 1)(8 - 3z).

Mathematics
1 answer:
Yakvenalex [24]3 years ago
7 0
Distributive property
a(b+c)+ab+ac
a(b-c)=ab-ac

(6z^2-4z+1)(8-3z)
move for nicety
(8-3z)(6z^2-4z+1)
distribute
8(6z^2-4z+1)-3z(6z^2-4z+1)=
48z^2-32z+8-18z^3+12z^2-3z=
-18z^3+48z^2+12z^2-32z-3z+8=
-18z^3+60z-35z+8
You might be interested in
What is a 2 digit number between 20 and 99
PilotLPTM [1.2K]
Any number from 21-98 is between 20 and 99.
4 0
3 years ago
Read 2 more answers
Which answer best details a weakness of the Articles of Confederation?
Daniel [21]

Answer:

The major weakness of the Articles of Confederation was that it did not allow Congress to tax the nation, which caused debt issues (A).

Explanation:

Not only this but it prevented the Congress from forming a central government that would be capable of ruling the newly formed United States.

6 0
2 years ago
Helppppppp meeee olsssss
zavuch27 [327]

Answer:

i don't see  what you need help

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
A certain arithmetic sequence has this explicit formula for the nth term:
Margaret [11]
The number 6 could replace the gap :)
6 0
2 years ago
Read 2 more answers
EXAMPLE 5 Find the maximum value of the function f(x, y, z) = x + 2y + 11z on the curve of intersection of the plane x − y + z =
Taya2010 [7]

Answer:

\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}

<em>Maximum value of f=2.41</em>

Step-by-step explanation:

<u>Lagrange Multipliers</u>

It's a method to optimize (maximize or minimize) functions of more than one variable subject to equality restrictions.

Given a function of three variables f(x,y,z) and a restriction in the form of an equality g(x,y,z)=0, then we are interested in finding the values of x,y,z where both gradients are parallel, i.e.

\bigtriangledown  f=\lambda \bigtriangledown  g

for some scalar \lambda called the Lagrange multiplier.

For more than one restriction, say g(x,y,z)=0 and h(x,y,z)=0, the Lagrange condition is

\bigtriangledown  f=\lambda \bigtriangledown  g+\mu \bigtriangledown  h

The gradient of f is

\bigtriangledown  f=

Considering each variable as independent we have three equations right from the Lagrange condition, plus one for each restriction, to form a 5x5 system of equations in x,y,z,\lambda,\mu.

We have

f(x, y, z) = x + 2y + 11z\\g(x, y, z) = x - y + z -1=0\\h(x, y, z) = x^2 + y^2 -1= 0

Let's compute the partial derivatives

f_x=1\ ,f_y=2\ ,f_z=11\ \\g_x=1\ ,g_y=-1\ ,g_z=1\\h_x=2x\ ,h_y=2y\ ,h_z=0

The Lagrange condition leads to

1=\lambda (1)+\mu (2x)\\2=\lambda (-1)+\mu (2y)\\11=\lambda (1)+\mu (0)

Operating and simplifying

1=\lambda+2x\mu\\2=-\lambda +2y\mu \\\lambda=11

Replacing the value of \lambda in the two first equations, we get

1=11+2x\mu\\2=-11 +2y\mu

From the first equation

\displaystyle 2\mu=\frac{-10}{x}

Replacing into the second

\displaystyle 13=y\frac{-10}{x}

Or, equivalently

13x=-10y

Squaring

169x^2=100y^2

To solve, we use the restriction h

x^2 + y^2 = 1

Multiplying by 100

100x^2 + 100y^2 = 100

Replacing the above condition

100x^2 + 169x^2 = 100

Solving for x

\displaystyle x=\pm \frac{10}{\sqrt{269}}

We compute the values of y by solving

13x=-10y

\displaystyle y=-\frac{13x}{10}

For

\displaystyle x= \frac{10}{\sqrt{269}}

\displaystyle y= -\frac{13}{\sqrt{269}}

And for

\displaystyle x= -\frac{10}{\sqrt{269}}

\displaystyle y= \frac{13}{\sqrt{269}}

Finally, we get z using the other restriction

x - y + z = 1

Or:

z = 1-x+y

The first solution yields to

\displaystyle z = 1-\frac{10}{\sqrt{269}}-\frac{13}{\sqrt{269}}

\displaystyle z = \frac{-23\sqrt{269}+269}{269}

And the second solution gives us

\displaystyle z = 1+\frac{10}{\sqrt{269}}+\frac{13}{\sqrt{269}}

\displaystyle z = \frac{23\sqrt{269}+269}{269}

Complete first solution:

\displaystyle x= \frac{10}{\sqrt{269}}\\\\\displaystyle y= -\frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{-23\sqrt{269}+269}{269}

Replacing into f, we get

f(x,y,z)=-0.4

Complete second solution:

\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}

Replacing into f, we get

f(x,y,z)=2.4

The second solution maximizes f to 2.4

5 0
3 years ago
Other questions:
  • Jen buys 4 tires for$272 what is the cost of one tire
    10·1 answer
  • The sum of a number times 3 and 15. I don't understand it.
    8·1 answer
  • Evan has a coin collection.
    8·1 answer
  • Parminder is working at an isolated weather station in the Yukon. She earns an annual salary of $45 650.00 plus $780.00/month fo
    9·1 answer
  • A city bus driver counts the number of passengers that board the bus at each stop. Below shows the number of passengers:
    6·2 answers
  • What is the sum of ⅔+<br>1/5​
    8·2 answers
  • PLEASE ANSWER BOTH AS FAST AS POSSIBLE PLEASE HELP HELP ILL MARK BRAINLEST!!!!! PLEASE ANSWER BOTH AS FAST AS POSSIBLE PLEASE HE
    13·2 answers
  • The midpoint of AB = need help?
    5·1 answer
  • I need to find x please help me with steps
    12·1 answer
  • Geometry given right triangle ABC with altitude BD drawn to hvpotenuse AC. If AD = 8
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!