First of all we will understand the question!!
<em>The</em><em> </em><em>question</em><em> </em><em>is</em><em> </em><em>saying</em><em> </em><em>that</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>given</em><em> </em><em>a</em><em> </em><em>function</em><em> </em><em>and</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>which</em><em> </em><em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>maximum</em><em> </em><em>profit</em><em>.</em><em>.</em><em>.</em><em> </em><em>Lets</em><em> </em><em>solve</em><em> </em><em>it</em><em> </em><em>by</em><em> </em><em>finding</em><em> </em><em>the</em><em> </em><em>extrema</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>vertex</em>
<em>
</em>
- <u>Identify the coefficients a and b of the quadratic function</u>
<em>
</em>
- <u>Since a<0, the function has the maximum value at x, calculated by substituting a and b into x=-b/2a</u>
<u>
</u>
- <u>Solve</u><u> </u><u>the</u><u> </u><u>equation</u><u> </u><u>for</u><u> </u><u>x</u><u> </u>
<u>
</u>
- <u>The maximum of the quadratic function is at </u><u>x</u><u>=</u><u>3</u>
I got shot in the Hebrew morning I was going on the same day lol I was going on the balls in
Answer:
personally i would use a.
Step-by-step explanation:
this is my answer and opinion btw
Answer:
(A) AA Similarity Theorem
Step-by-step explanation:
Given: AB ∥ DE
To Prove: 
Given Triangle ABC with Line DE drawn inside of the triangle and parallel to side AB. The line DE forms a new triangle DCE.
Because AB∥DE and segment CB crosses both lines, we can consider segment CB a transversal of the parallel lines.
Angles CED and CBA are corresponding angles of transversal CB and are therefore congruent, so ∠CED ≅ ∠CBA.
We can state ∠C ≅ ∠C using the reflexive property.
Therefore,
by the AA similarity theorem.
Remark: In the diagram, we can see that the two triangles share Angle C and have two equal angles at E and B. Therefore, they are similar by the Angle-Angle Similarity Theorem.
Hello there. To solve this question, we need to remember some properties on powers.
(-25)^(-4) * (5^(-3))^(-2)
To start, remember a^(-n) = 1/a^n, for a not equal to 0. Also, (ab)^n = a^n * b^n and (a^b)^c = a^(b*c)
Such that we have:
(-1)^(-4) * 25^(-4) * 5^((-3)*(-2))
1/(-1)^4 * (5^2)^(-4) * 5^6
Since (-1)^4 is equal to 1, we get:
5^(2*(-4)) * 5^6
5^(-8) * 5^6
Knowing that a^b * a^c = a^(b + c), we get:
5^(-8+6)
5^(-2)
Applying the first rule, we get:
1/5^2
1/25.