4 bicycles 2 tricycles
4 (bicycles)times 2(number of wheels on each bicycle) = 8
2 (bike) time 3 (number of wheels on each) = 6
8+6=14
<span>3x - 2y + 2y > -14 + 2y </span>
<span>3x + 0 > -14 + 2y </span>
<span>3x > -14 + 2y </span>
<span>3x + 14 > -14 + 14 + 2y </span>
<span>3x + 14 > 0 + 2y </span>
<span>3x + 14 > 2y </span>
<span>(3x + 14)/2 > 2y/2 </span>
<span>(3x + 14)/2 > y*(2/2) </span>
<span>(3x + 14)/2 > y*(1) </span>
<span>(3x + 14)/2 > y </span>
<span>y < (3x + 14)/2 </span>
<span>y < 3x/2 + 14/2 </span>
<span>y < 3x/2 + 7 </span>
<span>y < (3/2)*x + 7 </span>
<span>“y” is LESS THAN (3/2)*x + 7 </span>
<span>the slope intercept form of the inequality is: y < (3/2)*x + 7 </span>
<span>STEP 2: Temporarily change the inequality into an equation by replacing the < symbol with an = symbol. </span>
<span>y < (3/2)*x + 7 </span>
<span>y = (3/2)*x + 7 </span>
<span>STEP 3: Prepare the x-y table using the equation from Step 2. </span>
<span>Using the slope intercept form of the equation from Step 2, choose a value for x, and then compute y for at least three points. </span>
<span>Although you could plot the graph with just two sets of x-y coordinates, you should compute at least three different sets of coordinates points to ensure you have not made a mistake. All three x-y coordinates must lie on the same straight line. If they do not, you have made a mistake. </span>
<span>You can choose any value for x. </span>
<span>For example, (arbitrarily) choose x = -2 </span>
<span>If x = -2, </span>
<span>y = (3/2)*x + 7 </span>
<span>y = (3/2)*(-2) + 7 </span>
<span>y = 4 </span>
Answer:
Hope this helps out dude!
Step-by-step explanation:
q(x)= x 2 −6x+9 x 2 −8x+15 q, left parenthesis, x, right parenthesis, equals, start fraction, x, squared, minus, 8, x, plus, 1
AURORKA [14]
According to the theory of <em>rational</em> functions, there are no <em>vertical</em> asymptotes at the <em>rational</em> function evaluated at x = 3.
<h3>What is the behavior of a functions close to one its vertical asymptotes?</h3>
Herein we know that the <em>rational</em> function is q(x) = (x² - 6 · x + 9) / (x² - 8 · x + 15), there are <em>vertical</em> asymptotes for values of x such that the denominator becomes zero. First, we factor both numerator and denominator of the equation to see <em>evitable</em> and <em>non-evitable</em> discontinuities:
q(x) = (x² - 6 · x + 9) / (x² - 8 · x + 15)
q(x) = [(x - 3)²] / [(x - 3) · (x - 5)]
q(x) = (x - 3) / (x - 5)
There are one <em>evitable</em> discontinuity and one <em>non-evitable</em> discontinuity. According to the theory of <em>rational</em> functions, there are no <em>vertical</em> asymptotes at the <em>rational</em> function evaluated at x = 3.
To learn more on rational functions: brainly.com/question/27914791
#SPJ1