The side AB measures option 2.
units long.
Step-by-step explanation:
Step 1:
The coordinates of the given triangle ABC are A (4, 5), B (2, 1), and C (4, 1).
The sides of the triangle are AB, BC, and CA. We need to determine the length of AB.
To calculate the distance between two points, we use the formula 
where (
) are the coordinates of the first point and (
) are the coordinates of the second point.
Step 2:
For A (4, 5) and B (2, 1), (
) = (4, 5) and (
) = (2, 1). Substituting these values in the distance formula, we get

So the side AB measures
units long which is the second option.
Step-by-step explanation:
h(x) = 3. g(x) + 5
x= -1 h(x) = 3×8 + 5= 29
x= 0h(x) = 3×5 + 5= 20
x= 2 h(x) = 3×1 + 5= 8
x= 5 h(x) = 3×-5 + 5= -10
Answer:
I think the answer is "adjacent, supplementary".
Answer:
answer is : Cos(13pi/8) = 0.3826
Step-by-step explanation:
We have, Cos (13pi/8)
Since 13pi/8 can be shown as 3pi/2 < 13pi/8 < 2pi
Hence 13pi/8 lies on fourth quadrant.
In fourth quadrant cosine will be positive.
Cos (13pi/8) = cos(3pi/2 + pi/8)
applying formula cos(A+B) = cos A cosB - sinAsinB
i.e Cos(3pi/2 + pi/8) = cos(3pi/2)cos(pi/8) - sin(3pi/2)sin(pi/8)
∵ Remember cos(3pi/2) =0 , sin(3pi/2) = -1
Cos(3pi/2 + pi/8) = 0 cos(pi/8) - (-1)sin(pi/8)
Cos(3pi/2 + pi/8) = 0 + 0.3826
Cos(3pi/2 + pi/8) = 0.3826
Hence we got Cos(13pi/8) = 0.3826