Answer:
the first answer
3 1/3 that's the correct answer
Easiest way is if you substitute each point (x,y) into each set of equations and both points work for both equations in the system of equations, then it is the correct answer
Otherwise substitute one equation for y in the other equation:
2x + 6 = x^2 + 5x + 6
-2x - 6. -2x -6
0 = x^2 + 3x. Factor
0 = x (x + 3)
Solve: x = 0. x + 3 = 0. ——> x = -3. Substitute into one original equation to get y value for
y = 2x + 6.
y = 2(0) + 6. y = 2(-3) + 6
y = 6. y = -6 + 6 —-> y = 0
(0 , 6) And. (-3 , 0)
Answer:
D = L/k
Step-by-step explanation:
Since A represents the amount of litter present in grams per square meter as a function of time in years, the net rate of litter present is
dA/dt = in flow - out flow
Since litter falls at a constant rate of L grams per square meter per year, in flow = L
Since litter decays at a constant proportional rate of k per year, the total amount of litter decay per square meter per year is A × k = Ak = out flow
So,
dA/dt = in flow - out flow
dA/dt = L - Ak
Separating the variables, we have
dA/(L - Ak) = dt
Integrating, we have
∫-kdA/-k(L - Ak) = ∫dt
1/k∫-kdA/(L - Ak) = ∫dt
1/k㏑(L - Ak) = t + C
㏑(L - Ak) = kt + kC
㏑(L - Ak) = kt + C' (C' = kC)
taking exponents of both sides, we have

When t = 0, A(0) = 0 (since the forest floor is initially clear)


So, D = R - A =

when t = 0(at initial time), the initial value of D =

Answer: She would have 32 pieces of cand in her bag
Step-by-step explanation: 27+5=32