1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady bird [3.3K]
1 year ago
9

F(3) = 8; f^ prime prime (3)=-4; g(3)=2,g^ prime (3)=-6 , find F(3) if F(x) = root(4, f(x) * g(x))

Mathematics
1 answer:
Marrrta [24]1 year ago
8 0

Given:

f(3)=8,f^{\prime}(3)=-4,g(3)=2,\text{ and }g^{\prime}(3)=-6

Required:

We\text{ need to find }F^{\prime}(3)\text{ if }F(x)=\sqrt[4]{f(x)g(x)}.

Explanation:

Given equation is

F(x)=\sqrt[4]{f(x)g(x)}.F(x)=(f(x)g(x))^{\frac{1}{4}}F(x)=f(x)^{\frac{1}{4}}g(x)^{\frac{1}{4}}

Differentiate the given equation for x.

Use\text{ }(uv)^{\prime}=uv^{\prime}+vu^{\prime}.\text{  Here u=}\sqrt[4]{f(x)}\text{ and v=}\sqrt[4]{g(x)}.

F^{\prime}(x)=f(x)^{\frac{1}{4}}(\frac{1}{4}g(x)^{\frac{1}{4}-1})g^{\prime}(x)+g(x)^{\frac{1}{4}}(\frac{1}{4}f(x)^{\frac{1}{4}-1})f^{\prime}(x)=\frac{1}{4}f(x)^{\frac{1}{4}}g(x)^{\frac{1}{4}-\frac{1\times4}{4}}g^{\prime}(x)+\frac{1}{4}g(x)^{\frac{1}{4}}f(x)^{\frac{1}{1}-\frac{1\times4}{4}}f^{\prime}(x)=\frac{1}{4}f(x)^{\frac{1}{4}}g(x)^{\frac{1-4}{4}}g^{\prime}(x)+\frac{1}{4}g(x)^{\frac{1}{4}}f(x)^{\frac{1-4}{4}}f^{\prime}(x)F^{\prime}(x)=\frac{1}{4}f(x)^{\frac{1}{4}}g(x)^{\frac{-3}{4}}g^{\prime}(x)+\frac{1}{4}g(x)^{\frac{1}{4}}f(x)^{\frac{-3}{4}}f^{\prime}(x)

Replace x=3 in the equation.

F^{\prime}(3)=\frac{1}{4}f(3)^{\frac{1}{4}}g(3)^{\frac{-3}{4}}g^{\prime}(3)+\frac{1}{4}g(3)^{\frac{1}{4}}f(3)^{\frac{-3}{4}}f^{\prime}(3)Substitute\text{ }f(3)=8,f^{\prime}(3)=-4,g(3)=2,\text{ and }g^{\prime}(3)=-6\text{ in the equation.}F^{\prime}(3)=\frac{1}{4}(8)^{\frac{1}{4}}(2)^{\frac{-3}{4}}(-6)+\frac{1}{4}(2)^{\frac{1}{4}}(8)^{\frac{-3}{4}}(-4)F^{\prime}(3)=\frac{-6}{4}(8)^{\frac{1}{4}}(2^3)^{\frac{-1}{4}}+\frac{-4}{4}(2)^{\frac{1}{4}}(8^3)^{\frac{-1}{4}}F^{\prime}(3)=\frac{-3}{2}(8)^{\frac{1}{4}}(8)^{\frac{-1}{4}}-(2)^{\frac{1}{4}}(8^3)^{\frac{-1}{4}}F^{\prime}(3)=\frac{-3}{2}\frac{\sqrt[4]{8}}{\sqrt[4]{8}}-\frac{\sqrt[4]{2}}{\sqrt[4]{8^3}}F^{\prime}(3)=\frac{-3}{2}-\frac{\sqrt[4]{2}}{\sqrt[4]{(2)^9}}F^{\prime}(3)=\frac{-3}{2}-\frac{\sqrt[4]{2}}{\sqrt[4]{(2)^4(2)^4}(2)}F^{\prime}(3)=\frac{-3}{2}-\frac{\sqrt[4]{2}}{4\sqrt[4]{}(2)}F^{\prime}(3)=\frac{-3}{2}-\frac{1}{4}F^{\prime}(3)=\frac{-3\times2}{2\times2}-\frac{1}{4}F^{\prime}(3)=\frac{-6-1}{4}F^{\prime}(3)=\frac{-7}{4}

Final answer:

F^{\prime}(3)=\frac{-7}{4}

You might be interested in
prove the two triangles are congruent?
e-lub [12.9K]
Is there more information i can get out of this ?
3 0
2 years ago
Read 2 more answers
Plzzzzzzzzzz help meee!!
iren [92.7K]

Answer:

23 inches wider

Step-by-step explanation:

Subtract the 2 from the width 25 to get 23

3 0
3 years ago
Use inductive reasoning to describe the pattern of each sequence. Then find the next two terms. 1, 2, 5, 6, 9,
juin [17]
It looks like the first 1 is the first problem, problem #1. (because of the period)
If this is the case, then the second sequence is 1, 0, -1, ...
1-1=0
0-1=-1
-1-1=-2
-2-1=-3
-3-1=-4
The sequence would then be 1, 0, -1, -2, -3, -4, ...
5 0
3 years ago
Read 2 more answers
Solve by substitution -4x-y=-2,y=-4x+3​
IRISSAK [1]

Answer:

No solution

Step-by-step explanation:

Substitution is done by substituting one equation into another. To begin solve one equation for a variable.

Substitute y=-4x+3​ into -4x-y=-2.

-4x -(-4x + 3) = -2

-4x + 4x - 3 = -2

-3=-2

This is a false statement and there is no variable present anymore. This means the equations have no solution.

7 0
3 years ago
Find the height of the triangular pyramid when the volume is 318 square centimeters
yawa3891 [41]
92729292 is that answer!!
3 0
3 years ago
Other questions:
  • The home run percentage is the number of home runs per 100 times at bat. A random sample of 43 professional baseball players gav
    10·1 answer
  • If d is the midpoint of ce, ce=10x+18 and de=7x-1, find x
    11·2 answers
  • swati won a Computer game that she played with matt. The sum of the scores was 754. The difference of there scores was 176. How
    11·1 answer
  • I give thank and 5 stars :D
    11·1 answer
  • The sum of 7 and x is -10
    11·2 answers
  • I will give brainliest to first CORRECT answer!
    15·2 answers
  • Multiple the binomials (x+3)^2
    15·1 answer
  • PLEASE HELP! IF ANYONE CAN HELP PLEASE HELP!
    10·2 answers
  • Pls help and thank you!!
    11·1 answer
  • Given that f(x) = 4x - 3 and g(x) 2x-1 divided by 3<br><br> solve for g(f(2))
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!