Answer:
3.67 mol Cl
Explanation:
We need to convert g of Cl 2 to moles of Cl. First we divide 130 gCl2 by the molar mass (70.90 gCl2/mol) to find out how many moles of Cl2 do we have.
130 gCl2 x
= 1.83 mol Cl2
Then we need to convert 1.83 mol de Cl2 to moles of Cl. We have 2 moles of Cl in every Cl2 molecule so we just need to multiply by 2.
1.83 molCl2 x
= 3.67 molCl
The heat capacity or thermal capacity of a body is the quotient between the amount of heat energy transferred to a body or system in any process and the change in temperature it experiences. In a more rigorous form, it is the energy necessary to increase the temperature of a certain substance by one temperature unit. [1] It indicates the greater or lesser difficulty that said body presents in experiencing changes in temperature under the supply of heat. It can be interpreted as a measure of thermal inertia. It is an extensive property, since its magnitude depends not only on the substance but also on the amount of matter in the body or system; therefore, it is characteristic of a particular body or system. For example, the heat capacity of the water in an Olympic-size swimming pool will be greater than that of the water in a glass. In general, heat capacity also depends on temperature and pressure.
Explanation:
espero te sirva, me demore en un chingo en traducirte....
sinceramente eres la primera persona a la que le tradusco la tarea xd
I'm Latin American
do you want to be my friend
Molecule is the general term used to describe any atoms that are connected by chemical bonds.
Every combination of atoms is a molecule. A compound is a molecule made
of atoms from different elements.
Well, if a molecule is considered to be a discrete small unit made up of atoms joined
together, then NaCl, and any other ionic solid is not really a molecule. In NaCl we have a
repetitive crystal structure in which each Na+ ion is surrounded by Cl-
ions, and vice-versa, for as far as the crystal extends. There really isn't such a thing
as an NaCl molecule.