The number of moles in 3.20 x 10² formula units of calcium iodide is 0.053 moles.
<h3>How to calculate number of moles?</h3>
The number of moles in the formula units of a substance is calculated by dividing the formula unit by Avogadro's number.
According to this question, 3.20 x 10² formula units are in calcium iodide. The number of moles is as follows:
no of moles = 3.20 x 10²² ÷ 6.02 × 10²³
no of moles = 0.53 × 10-¹
no of moles = 0.053 moles
Therefore, the number of moles in 3.20 x 10² formula units of calcium iodide is 0.053 moles.
Learn more about number of moles at: brainly.com/question/12513822
#SPJ6
Answer:Most elements on the periodic table are metals. Looking at the periodic table shows that most elements are metallic.
Explanation: Sorry if this want what you were looking for
Answer:
Gas, Liquid, Solid.
Explanation:
please mark brianliest :)
Answer:
The answer is quartet 2.40 ppm.
Note: Kindly find an attached image below for the part of the solution to this question
Sources: The image was researched from Course hero platform
Explanation:
Solution
Multiplicity or (n+1) rule:
It helps in determination of multiplicity of an individual proton or individual types of proton which are available in the molecule.
Multiplicity =(n+1)
Thus
The non equivalent protons which are attached from adjacent atom is denoted by n.
Now because there are three non-equivalent protons are present at adjacent carbon of methylene group, hence the multiplicity of methylene hydrogen is given as follows:
The multiplicity will be the same for the two hydrogen's. thus we compute multiplicity only for one hydrogen atom stated below:
Non- equivalent = 3
Multiplicity = (3 +1)
= 4
= Quartet for 2H
A quartet for 2H indicates that the hydrogen atoms attached from the carbon, which is attached one side from a methyl group and the other side form an atom that have no any hydrogens.
Now due +I effect of carbonyl group, chemical shift value is high for these two hydrogens which is exactly at 2.40 ppm or 2.40 Quartet.