Answer:
308 moles of sodium
Explanation:
The balanced equation for the chemical reaction between sodium metal (Na) and water (H₂O) is the following:
2 Na(s) + 2 H₂O → 2 NaOH(aq) + H₂(g)
From the equation, we can see that 2 moles of Na react with 2 moles of H₂O to give 2 moles of NaOH and 1 mol of H₂ (hydrogen gas). So the stoichiometric mole ratio between Na and H₂ is: 2 mol Na/1 mol H₂. Thus, we multiply the mole ratio by the moles of H₂ to be produced to obtain the moles of Na required:
moles of Na required = 2 mol Na/1 mol H₂ x 154 moles H₂ = 308 moles Na
Therefore, 308 moles of sodium are needed to produce 154 moles of hydrogen gas.
Reduction is the process by which eletrons are gained by an atom.
The answer would be a tenfold increase<span>
The pH scale is calculated based on the concentration of H+ ion in the solution. The formula is using log10, so to decrease 1 unit from the scale it will be 10^1= 10 fold of increase. For 2 </span>unit, you will need 10^2= 100 fold of increase.
First find the molar mass of Fe2O3, after you would want to do this
120 g Fe2O3 x 1 mol = # mol
Molar Mass