Answer:
18.9 x 10¹³ grams of Bauxite Ore
Explanation:
Al₂O₃ = 50% of Bauxite Ore
Al₂O₃ = 0.5 (Bauxite Ore)--------------------------------------- (1)
Overall reaction:
2Al₂O₃ + 3C → 4Al + 3CO₂--------------------------------------- (2)
[ Al= 27 , O=16, C=12]
From (2), 2 moles of Aluminium oxide (Al₂O₃) gives 4 moles of Aluminium
In terms of grams, we can say:
Al₂O₃ = [2(27) +3(16)]
= 54 +48
=102grams
2 moles of Al₂O₃ = 2 x102grams
=204grams
4 moles of Al = 4 x 27
=108 grams
So from (2):
204 grams of Al₂O₃ = 108 grams of Aluminium
x grams of Al₂O₃ = 5.0 x 10¹³grams of Aluminium
Calculating for x:
x = (204 x 5.0 x 10¹³)/ 108
= 9.44 x 10¹³ grams
So 9.44 x 10¹³ grams of pure bauxite (Bauxite) is required.
However the to calculate the quantity of raw bauxite, we use (1):
Bauxite ore = Pure Bauxite/0.5
= 9.44 x 10¹³ grams/0.5
= 18.88 x 10¹³ grams
≈ 18.9 x 10¹³ grams
Answer:
yes, in certain cases
there are different types of bondings between atoms
and in some they lend electrons to make their atom stable this type of bonding is called ionic bonding
and in covalent bond the atoms share their electrons
Solution :
Comparing the solubility of silver chromate for the solutions :
----- Less soluble than in pure water.
----- Less soluble than in pure water.
----- Similar solubility as in the pure water
----- Similar solubility as in the pure water
The silver chromate dissociates to form :

When 0.1 M of
is added, the equilibrium shifts towards the reverse direction due to the common ion effect of
, so the solubility of
decreases.
Both
and
are neutral mediums, so they do not affect the solubility.
A because cation is positive and anion is negative evening it out at constant.
Answer:
and 
Explanation:
The equation for the reaction is AgNO3(aq) + KCl(aq) ==> AgCl(s) + KNO3(aq)
With all the ions, it is
(aq) +
(aq) +
(aq) +
(aq) ==> AgCl(s) +
and
do not change, so they are the spectator ions and are removed
The ionic equation is:
(aq) +
(aq) ==> AgCl(s)