1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
finlep [7]
1 year ago
10

when solving this, do i take it out of the parenthesis or make it into a square root? because its very confusing.

Mathematics
1 answer:
Licemer1 [7]1 year ago
7 0

Finding the inverse function:

We are given a function y = f(x). To find the inverse function, we exchange x with y in the original function, and then isolate y.

So

We are given the function:

f(x)=(x+7)^5

So

y=(x+7)^5

Changing x with y

x=(y+7_{})^5

Now, we have to isolate y. So

(y+7)^5=x

We can apply the fifth root to both sides. So:

\sqrt[5]{(y+7)^5}=\sqrt[5]{x}y+7=\sqrt[5]{x}f^{-1}(x)=y=\sqrt[5]{x}-7

You might be interested in
(6x-5y+4)dy+(y-2x-1)dx=0​
Len [333]

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> + (<em>y</em> - 2<em>x</em> - 1) d<em>x</em> = 0

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> = (2<em>x</em> - <em>y</em> + 1) d<em>x</em>

d<em>y</em>/d<em>x</em> = (2<em>x</em> - <em>y</em> + 1) / (6<em>x</em> - 5<em>y</em> + 4)

Let <em>X</em> = <em>x</em> - <em>a</em> and <em>Y</em> = <em>y</em> - <em>b</em>. We want to find constants <em>a</em> and <em>b</em> such that

d<em>Y</em>/d<em>X</em> = (a rational function)

where the numerator and denominator on the right side are free of constant terms. Substituting <em>x</em> and <em>y</em> in the equation, we have

d<em>Y</em>/d<em>X</em> = (2 (<em>X</em> + <em>a</em>) - (<em>Y</em> + <em>b</em>) + 1) / (6 (<em>X</em> + <em>a</em>) - 5 (<em>Y</em> + <em>b</em>) + 4)

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em> + 2<em>a</em> - <em>b</em> + 1) / (6<em>X</em> - 5<em>Y</em> + 6<em>a</em> - 5<em>b</em> + 4)

Then we solve for <em>a</em> and <em>b</em> in the system,

2<em>a</em> - <em>b</em> + 1 = 0

6<em>a</em> - 5<em>b</em> + 4 = 0

==>   <em>a</em> = -1/4 and <em>b</em> = 1/2

With these constants, the equation reduces to

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em>) / (6<em>X</em> - 5<em>Y</em>)

Now substitute <em>Y</em> = <em>VX</em> and d<em>Y</em>/d<em>X</em> = <em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> :

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2<em>X</em> - <em>VX</em>) / (6<em>X</em> - 5<em>VX</em>)

The equation becomes separable after some simplification:

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>) - <em>V</em>

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em> - (6 - 5<em>V</em>)) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (4<em>V</em> - 4) / (6 - 5<em>V</em>)

- (5<em>V</em> - 6) / (4<em>V</em> - 4) d<em>V</em> = 1/<em>X</em> d<em>X</em>

Integrate both sides:

-5/4 <em>V</em> + 1/4 ln|4<em>V</em> - 4| = ln|<em>X</em>| + <em>C</em>

Extract a constant from the logarithm on the left:

-5/4 <em>V</em> + 1/4 (ln(4) + ln|<em>V</em> - 1|) = ln|<em>X</em>| + <em>C</em>

-5/4 <em>V</em> + 1/4 ln|<em>V</em> - 1| = ln|<em>X</em>| + <em>C</em>

-5<em>V</em> + ln|<em>V</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Get this back in terms of <em>Y</em> :

-5<em>Y/X</em> + ln|<em>Y/X</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Now get the solution in terms of <em>y</em> and <em>x</em> :

-5 (<em>y</em> - 1/2)/(<em>x</em> + 1/4) + ln|(<em>y</em> - 1/2)/(<em>x</em> + 1/4) - 1| = 4 ln|<em>x</em> + 1/4| + <em>C</em>

<em />

With some manipulation of constants and logarithms, and a bit of algebra, we can rewrite this solution as

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|<em>x</em> + 1/4| + 4 ln(4) + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| - ln|4<em>x</em> + 1| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| = 5 ln|4<em>x</em> + 1| + <em>C</em>

8 0
3 years ago
Sean wants to spend (example) $100 on clothing and he wants to purchase 6 additional items for his wardrobe. Each pair of pants
Burka [1]

Answer: 4 Shirts and 2 Pants


15+15+15+15+20+20

or

15*4+20*2

7 0
2 years ago
Please help me answer this with an explanation
Nata [24]
You need to find the slope first. (-9,-4). (3,4)

-4-4= -8
-9-3 =-12. Slope is -8/-12 or 8/12 or 2/3


Perpendicular is the negative reciprocal. Or flip over the 2/3 and make it negative.

The answer is - 3/2
5 0
3 years ago
Read 2 more answers
I added a screenshot of my question
Anastasy [175]
<h2>Answer:</h2>

y=\frac{1}{3}x+4

<h2>Explanation:</h2>

Slope-intercept form:

What the variables mean:

Y=the y axis

m=the slope

x=the x-axis

b=the y intercept (the point on the line that crosses the y-axis)

To Calculate the Slope:

1. Find any 2 points on the line

2. The number of units the second point is above the first is the numerator

3. The number of units the second point is to the right of the first is a denominator

(Please see the picture attached)

y=\frac{1}{3}x+b

To Find the Y-Intercept:

1. Find the point on the line that crosses the y-axis

(Please see the picture attached)

y=\frac{1}{3}x+4

5 0
3 years ago
For a school play, 739 tickets valued at $857 were sold. Some cost $1 and others cost a $1.50. How many $1 tickets were sold?
balu736 [363]

Answer:

503 $1 tickets sold.

Step-by-step explanation:

Use two equations  

Let x = number of $1 tickets sold  

Let y = number of $1.50 tickets sold  

x + y = 739  

1x + (1.5)y = 857  

First equation ==> y = 739 - x  

Plug this into the second equation  

x + (1.5)(739 - x) = 857  

x + 1108.5 - 1.5x = 857  

- 0.5x = -251.5  

x = 503  

There were 503 $1 tickets sold.  

To find the number of $1.50 tickets, just plug this value of x into either one of the equations.  

(503) + y = 739       (739 - 503 = 236)

y = 236  

There were 236 $1.50 tickets sold.

3 0
3 years ago
Other questions:
  • Grant is painting a rectangular board that has a width of 1/3 foot. He has enough paint to cover 3 square feet. If he is able to
    8·1 answer
  • Dan is 8 years older than Fiona. Gavyn is 9 years younger than Fiona. If the total of their ages is 56, how old is the eldest of
    9·1 answer
  • If c is a 5 x 1 matrix and dis a 3 x 5 matrix, what are the dimensions of dc
    13·1 answer
  • Answer using the graph
    9·1 answer
  • What is 28% as a fraction or mixed number in simplest form
    12·2 answers
  • 8% of _______ is 2 plz help me
    11·2 answers
  • The answer..................
    8·1 answer
  • Among all pairs of numbers whose difference is 16​, find a pair whose product is as small as possible. What is the minimum​ prod
    10·1 answer
  • What is 105 in the ratio 8:7
    9·1 answer
  • Look at the pic plz, Im having trouble
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!