Is there some sort of paper that shows you what to do?
Answer:
Natalie bought 500 apples at $0.40 each, then she pays $0.40 500 times, this means that the total cost of the 500 apples is:
Cost = 500*$0.40 = $200
Now she threw away n apples from the 500 apples, then the number of apples that she has now is:
apples = 500 - n
And she sells the remaining apples for $0.70 each.
a) The amount that she gets by selling the apples is:
Revenue = (500 - n)*$0.70
b) We know that she did not make a loss, then the revenue must be larger than the cost, this means that:
cost ≤ revenue
$200 ≤ (500 - n)*$0.70
c) We need to solve the inequality for n.
$200 ≤ (500 - n)*$0.70
$200/$0.70 ≤ (500 - n)
285.7 ≤ 500 - n
n + 285.7 ≤ 500
n ≤ 500 - 285.7
n ≤ 214.3
Then the maximum value of n must be equal or smaller than 214.3
And n is a whole number, then we can conclude that the maximum number of rotten apples can be 214.
Answer: 1/5 or 0.2 in decimal form.
Explanation:
There are 60 seconds in a minute. We know the river flows 12 ft per 1 minute. So in order to find the rate per seconds, divide: 60/12. You get the answer: 1/5 or 0.2 in decimal form.
Set the two values equal to each other with 18x-2=12x+2 and then plug it in to the equation and solve
We can solve with a system of equations, and use c for the amount of cans of soup and f for the amount of frozen dinners.
The first equation will represent the amount of sodium. We know the (sodium in one can times the number of cans) plus (sodium in one frozen dinner times the number of dinners) is the expression for the total sodium. We also know the total sodium is 4450, so:
250c + 550f = 4450
The second equation is to find how many of each item are purchased:
c + f = 13
Solve for c in the second equation:
c = 13 - f
Plug this in for c in the first equation:
250(13-f) + 550f = 4450
3250 - 250f + 550f = 4450
300f = 1200
f = 4
Now plug the value for f into the second equation:
c + 4 = 13
c = 9
The answer is 9 cans of soups and 4 frozen dinners.