Answer:
See step by step answer
Step-by-step explanation:
the factors are (x+22)(x-10)=0
so x = -22 and 10, but a dimension cannot be negative, so the answer for x is 10 and then if you plug it back in the dimensions are 4 cm, 11 cm and 21 cm.
When you multiply 4 * 11 * 21 = 924, so you know it's correct.
Answer: 1/2?
Step-by-step explanation:
1. Equations are:
3x + 2 = 5x + 8 and 7x + 2 = 7x - 4
2. The equation is:
2(32x - 2) = 2x + 36
64x - 4 = 2x + 36
3. You have to choose a classmate's question and answer.
4. You have to look at responses and comments.
Answer:
See below ~
Step-by-step explanation:
<u>Question 1</u>
⇒ -7x - (8x + 16) = -1
⇒ -7x - 8x - 16 = -1
⇒ -15x = 15
⇒ x = -1
⇒ y = 8(-1) + 16 = 8
⇒ Solution = <u>(-1, 8)</u>
<u></u>
<u>Question 2</u>
⇒ 3x + 4(-3x - 18) = 0
⇒ 3x - 12x - 72 = 0
⇒ -9x = 72
⇒ x = -8
⇒ y = -3(-8) - 18 = 6
⇒ Solution = <u>(-8, 6)</u>
<u>Question 3</u> (not clear)
<u>Question 4</u>
⇒ -8x - 7(6x) = 0
⇒ -8x - 42x = 0
⇒ -50x = 0
⇒ x = 0
⇒ y = 6(0) = 0
⇒ Solution = <u>(0, 0)</u>
<u>Question 8</u>
- 2x - 6y = -14
- y = -5x - 19
⇒ 2x - 6(-5x - 19) = -14
⇒ 2x + 30x + 114 = -14
⇒ 32x = -128
⇒ x = -4
⇒ y = -5(-4) - 19 = 1
⇒ Solution = <u>(-4, 1)</u>
Answer:
(2, 5)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y - 3x = 1
2y - x = 12
<u>Step 2: Rewrite Systems</u>
y - 3x = 1
- Add 3x on both sides: y = 3x + 1
<u>Step 3: Redefine Systems</u>
y = 3x + 1
2y - x = 12
<u>Step 4: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2(3x + 1) - x = 12
- Distribute 2: 6x + 2 - x = 12
- Combine like terms: 5x + 2 = 12
- Isolate <em>x</em> term: 5x = 10
- Isolate <em>x</em>: x = 2
<u>Step 5: Solve for </u><em><u>y</u></em>
- Define equation: 2y - x = 12
- Substitute in <em>x</em>: 2y - 2 = 12
- Isolate <em>y </em>term: 2y = 10
- Isolate <em>y</em>: y = 5