Answer:
Standard form of

Step-by-step explanation:
Here, the given expression is 
Now, simplifying the above expression in parts, we get

hence, combining both parts:


= 
The above expression is of the STANDARD FORM: 
Hence, the standard form of

Answer:
Therefore the rate change of distance between the car and the person at the instant, the car is 24 m from the intersection is 12 m/s.
Step-by-step explanation:
Given that,
A person stand 10 meters east of an intersection and watches a car driving towards the intersection from the north at 13 m/s.
From Pythagorean Theorem,
(The distance between car and person)²= (The distance of the car from intersection)²+ (The distance of the person from intersection)²+
Assume that the distance of the car from the intersection and from the person be x and y at any time t respectively.
∴y²= x²+10²

Differentiating with respect to t


Since the car driving towards the intersection at 13 m/s.
so,

Now



= -12 m/s
Negative sign denotes the distance between the car and the person decrease.
Therefore the rate change of distance between the car and the person at the instant, the car is 24 m from the intersection is 12 m/s.
The third one is the right one on e2020
Answer:
Either
(approximately
) or
(approximately
.)
Step-by-step explanation:
Let
denote the first term of this geometric series, and let
denote the common ratio of this geometric series.
The first five terms of this series would be:
First equation:
.
Second equation:
.
Rewrite and simplify the first equation.
.
Therefore, the first equation becomes:
..
Similarly, rewrite and simplify the second equation:
.
Therefore, the second equation becomes:
.
Take the quotient between these two equations:
.
Simplify and solve for
:
.
.
Either
or
.
Assume that
. Substitute back to either of the two original equations to show that
.
Calculate the sum of the first five terms:
.
Similarly, assume that
. Substitute back to either of the two original equations to show that
.
Calculate the sum of the first five terms:
.