Absolute value of -1/3 is 1/3
The volume of the solid objects are 612π in³ and 1566πcm³
<h3>Volume of solid object</h3>
The given objects are composite figures consisting of two shapes.
The volume of the blue figure is expressed as;
Volume = Volume of cylinder + volume of hemisphere
Volume = πr²h + 2/3πr³
Volume = πr²(h + 2/3r)
Volume = π(6)²(13+2/3(6))
Volume = 36π(13 + 4)
Volume = 612π in³
For the other object
Volume = Volume of cylinder + volume of cone
Volume = πr²h + 1/3πr²h
Volume = π(9)²(15) + 1/3π(9)²(13)
Volume= 81π (15+13/3)
Volume= 1566πcm³
Hence the volume of the solid objects are 612π in³ and 1566πcm³
Learn more on volume of composite figures here: brainly.com/question/1205683
#SPJ1
For every c substitute 4 and for every d substitute -2
c=4
d=-2
6c + 5d - 4c - 3d + 3c - 6d
= 6(4)+ 5(-2)- 4(4)- 3(-2)+ 3(4)- 6(-2)
=24+(-10)-16-(-6)+12-(-12)
=24-10-16+6+12+12
=28
Notice that
13 - 9 = 4
17 - 13 = 4
so it's likely that each pair of consecutive terms in the sum differ by 4. This means the last term, 149, is equal to 9 plus some multiple of 4 :
149 = 9 + 4k
140 = 4k
k = 140/4
k = 35
This tells you there are 35 + 1 = 36 terms in the sum (since the first term is 9 plus 0 times 4, and the last term is 9 plus 35 times 4). Among the given options, only the first choice contains the same amount of terms.
Put another way, we have

but if we make the sum start at k = 1, we need to replace every instance of k with k - 1, and accordingly adjust the upper limit in the sum.


Answer:
1. {5,-9}
2.{4}
3.{9/2}
Step-by-step explanation:
The equation
can be solved as follows:




Then, the solutions of the equation are
.
Now, if
, we can solve the equation
as follows:




So, the unique solution of this last equation is 
The last equation is
, where
. To solve this equation we can proceed as follows:







But, x=11/4 is not a solution of this equation. So the unique solution is x=9/2.