1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marishachu [46]
2 years ago
6

I WILL MARK AND BRAINLIEST AND WILL GIVE 50 POINT!

Mathematics
1 answer:
Maru [420]2 years ago
8 0

The person that has the correct solution to the expression is Jeff because he followed the right process as detailed below. However, Annette is wrong because in step 3, she used -500 instead of +500.

<h3>How to use properties of equality?</h3>

The equation they are trying to solve is;

equation

3250 - M = 1500 + 2(M - 500)

Step 1;

Expand the bracket using distribution property to get;

3250 - M = 1500 + 2M - 1000

Step 2;

Rearrange to get like terms together on either side as;

3250 - M = 1500 - 1000 + 2M

Step 3;

Simplify like terms on either side to get;

3250 - M = 500 + 2M

Step 4;

Using Addition Property of Equality, add M to both sides to get;

3250 - M + M = 500 + 2M + M

Step 5; 3250 = 500 + 3M

Step 6;

Using subtraction Property of Equality, subtract 500 from both sides to get; 3250 - 500 = 500 - 500 + 3M

Step 7; 2750 = 3M

Step 8; Using division property of equality, divide both sides by 3 to get;

2750/3 = 3M/3

Step 9; M = 916.67

Read more about Properties of Equality at; brainly.com/question/1601404

#SPJ1

You might be interested in
Use the geometric mean (altitude) theorem. What is the value of m?
Ludmilka [50]
The altitude is the mean proportional between the left and right parts of the hyptenuse

20/m = m/8
m² = 20 · 8
m² = 160
m = √160
m = 4√10
4 0
3 years ago
Read 2 more answers
Please help!! It would be much appreciated!
Alexxx [7]

Answer:

Power property for both

Step-by-step explanation:

The power property of logarithms says that if there is an exponent in a logarithm, then that exponent can be pulled to the front.

In the first question, 5 is at the front of the logarithm because it has been pulled from 3. If you move the 5 back to the 3, it would be 3^5, which is 243.

In the second question, 2 is at the front of the logarithm as it has been pulled from the 9. If you move the 2 back to the 9, it would be 9^2, or 81.

Example:

log10^2 would be equal to 2log10.

3 0
3 years ago
Mrs. Galicia launched a rocket into the air from the top of a building. Answer the following questions based on the graph below:
marusya05 [52]

Answer:

The first blank is 20 and the second one is 1.25

Step-by-step explanation:

i just took the quiz

3 0
4 years ago
2. Convert the following from standard form to vertex form:<br> g(x) = -5t2 - 10t + 15
Naya [18.7K]

Answer: y = -5(x+1)^2+20

Step-by-step explanation: I haven't done any math in a long time so take this with a grain of salt but they were equivalent on the calculator.

6 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Other questions:
  • Which data set COULD NOT be represented by the histogram shown?
    6·2 answers
  • Volume of 29 mL and has a mass of 53 g what’s is the density
    15·1 answer
  • With water from one hose, a swimming pool can be filled in 8 hours. A second, larger hose used alone can gill the pool in 6 hour
    15·1 answer
  • For a certain horse race comma the odds in favor of a certain horse finishing in second placehorse race, the odds in favor of a
    12·1 answer
  • Cual es la diferencia entre las funciones y afines
    8·1 answer
  • According to the rational root theorem, which function had the same set of potential rational roots as the function g(x)= 3x^5 -
    14·1 answer
  • PLEASE HELP
    7·1 answer
  • Miguel has $49.13 in his bank account. He paid two fees of $32.50 each, and then he made two depositis of $74.25 each. What is t
    9·1 answer
  • 15 is subtracted from a number and the difference is divided by 17. If the quotient is 4 and there is
    5·1 answer
  • BRAINIEST This is due today whoever answers this will be given brainiest
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!