We havep(X)=eβ0+β1X1+eβ0+β1X⇔eβ0+β1X(1−p(X))=p(X),p(X)=eβ0+β1X1+eβ0+β1X⇔eβ0+β1X(1−p(X))=p(X),which is equivalent top(X)1−p(X)=eβ0+β1X.p(X)1−p(X)=eβ0+β1X.
To use the Bayes classifier, we have to find the class (kk) for whichpk(x)=πk(1/2π−−√σ)e−(1/2σ2)(x−μk)2∑Kl=1πl(1/2π−−√σ)e−(1/2σ2)(x−μl)2=πke−(1/2σ2)(x−μk)2∑Kl=1πle−(1/2σ2)(x−μl)2pk(x)=πk(1/2πσ)e−(1/2σ2)(x−μk)2∑l=1Kπl(1/2πσ)e−(1/2σ2)(x−μl)2=πke−(1/2σ2)(x−μk)2∑l=1Kπle−(1/2σ2)(x−μl)2is largest. As the log function is monotonally increasing, it is equivalent to finding kk for whichlogpk(x)=logπk−(1/2σ2)(x−μk)2−log∑l=1Kπle−(1/2σ2)(x−μl)2logpk(x)=logπk−(1/2σ2)(x−μk)2−log∑l=1Kπle−(1/2σ2)(x−μl)2is largest. As the last term is independant of kk, we may restrict ourselves in finding kk for whichlogπk−(1/2σ2)(x−μk)2=logπk−12σ2x2+μkσ2x−μ2k2σ2logπk−(1/2σ2)(x−μk)2=logπk−12σ2x2+μkσ2x−μk22σ2is largest. The term in x2x2 is independant of kk, so it remains to find kk for whichδk(x)=μkσ2x−μ2k2σ2+logπkδk(x)=μkσ2x−μk22σ2+logπkis largest.
ng expression
∫0.950.0510dx+∫0.050(100x+5)dx+∫10.95(105−100x)dx=9+0.375+0.375=9.75.∫0.050.9510dx+∫00.05(100x+5)dx+∫0.951(105−100x)dx=9+0.375+0.375=9.75.So we may conclude that, on average, the fraction of available observations we will use to make the prediction is 9.75%9.75%.res. So when p→∞p→∞, we havelimp→∞(9.75%)p=0.
Let the number be x
6 times the number = 6x
<em>at least 22 (it be 22 or more}</em>
6x ≥ 22
Answer:
Step-by-step explanation:
If Jason travel 24 miles in 1/2 hour, he will travel 2*24=2*1/2h
48 miles/hour
or
24 miles...............................30 min
? miles in .............................60 min
(60*24)/30=48
Fx=2x2-x-6 Gx=x2-4
Fx÷Gx
2x2-x-6/x2-4
Simplify
2x+3 x-2/ x-2 x+2
You can cancel out x-2 since they are on both top n bottom
2x+3/x+2 answer is C
Answer:I need to see images in order to answer:/
Step-by-step explanation: