If Ms. Callahan has 24 feet of fencing, and she is building a pen, the PERIMETER of the pen must be 24 feet. The perimeter is basically the distance around a figure. The perimeter of a rectangle is equal to length plus width plus length plus width, AKA l+w+l+w, or P=2l+2w. In a rectangle, two pairs of sides are of equal length--so the two lengths and the two widths must be equal.
So, the formula is P=2l+2w. P, the perimeter, is 24, so 24=2l+2w. Let's try some values for l and see what we get for w. If the length is 1, l=1. 24=(2*1)+2w. 24=2+2w. 22=2w. w=11. So if length is 1 foot, width is 11 feet.
What if l=2? 24=(2*2)+2w. 24=4+2w. 2w=20. w=10. If l=2, w=10. And l=3? 24=(2*3)+2w. 24=6+2w. 18=2w. w=9. If l=3, w=9. Do you see a pattern? Every time we add 1 to l, we subtract 1 from w. So if l=4, w=8. If l=5, w=7. If l=6, w=6. Here, we start getting similar answers: if l=7, w=5. If l=8, w=4. Since we already know these values work, it doesn't matter whether we call it length or width. So, our answers are below.
Answer: Ms Callahan can make a pen with a length of 1 foot and a width of 11 feet, a length of 2 feet and a width of 10 feet, a length of 3 feet and a width of 9 feet, a length of 4 feet and a width of 8 feet, a length of 5 feet and a width of 7 feet, or a length of 6 feet and a width of 6 feet.
Hello.
<span>Reorder the terms:
-6 + y = 4(x + 5)
Reorder the terms:
-6 + y = 4(5 + x)
-6 + y = (5 * 4 + x * 4)
-6 + y = (20 + 4x)
Solving
-6 + y = 20 + 4x
Solving for variable 'y'.
Move all terms containing y to the left, all other terms to the right.
Add '6' to each side of the equation.
-6 + 6 + y = 20 + 6 + 4x
Combine like terms: -6 + 6 = 0
0 + y = 20 + 6 + 4x
y = 20 + 6 + 4x
Combine like terms: 20 + 6 = 26
y = 26 + 4x
Simplifying
y = 26 + 4x
</span>x-intercept: <span><span>(−<span>132</span>,0)</span><span>(-<span>132</span>,0)</span></span>y-intercept: <span>(0,26<span>)
Have a nice day</span></span>
Answer:
I. m = 2401
II. ((n+1) ∆ y)/n = 1/n[(n – y + 2)(n – y) + 1]
Step-by-step explanation:
I. Determination of m
x ∆ y = x² − 2xy + y²
2 ∆ − 5 = √m
2² − 2(2 × –5) + (–5)² = √m
4 – 2(–10) + 25 = √m
4 + 20 + 25 = √m
49 = √m
Take the square of both side
49² = m
2401 = m
m = 2401
II. Simplify ((n+1) ∆ y)/n
We'll begin by obtaining (n+1) ∆ y. This can be obtained as follow:
x ∆ y = x² − 2xy + y²
(n+1) ∆ y = (n+1)² – 2(n+1)y + y²
(n+1) ∆ y = n² + 2n + 1 – 2ny – 2y + y²
(n+1) ∆ y = n² + 2n – 2ny – 2y + y² + 1
(n+1) ∆ y = n² – 2ny + y² + 2n – 2y + 1
(n+1) ∆ y = n² – ny – ny + y² + 2n – 2y + 1
(n+1) ∆ y = n(n – y) – y(n – y) + 2(n – y) + 1
(n+1) ∆ y = (n – y + 2)(n – y) + 1
((n+1) ∆ y)/n = [(n – y + 2)(n – y) + 1] / n
((n+1) ∆ y)/n = 1/n[(n – y + 2)(n – y) + 1]
15:33
(Mark me the brainliest)
Answer:
what is the question
Step-by-step explanation: