The image formed by a concave mirror with the object placed at the center of curvature is real inverted and formed at the center of curvature. Using the ray diagram a ray from the top of the object to the mirror through f then reflected parallel to the principal axis,then the ray through the center of curvature reflected through the same point both intersect at a plane through center curvature and perpendicular to the principal axis. The point of intersection forms the top of the image and the center of curvature forms the bottom. Therefore, the correct choices are : real and inverted
Answer:
Total heat transfer is positive
Total work transfer is positive
Explanation:
The first law of thermodynamics states that when a system interacts with its surrounding, the amount of energy gained by the system must be equal to the amount of energy lost by the surrounding. In a closed system, exchange of energy with the surrounding can be done through heat and work transfer.
Heat transfer to a system is positive and that transferred from the system is negative.
Also, work done by a system is positive while the work done on the system is negative.
Therefore, from the question, since the heat engine inputs 10kJ of heat, then heat is being transferred to the system. Hence, the sign of the total heat transfer is positive (+ve)
Also, since the heat engine outputs 5kJ of work, it implies that work is being done by the system. Hence the sign of the total work transfer is also positive (+ve).
Answer:
The acceleration of the sprinter is 1.4 m/s²
Explanation:
Hi there!
The equation of position of the sprinter is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the sprinter at a time t.
x0 = initial position.
v0 = initial velocity.
t = time.
a = acceleration.
Since the origin of the frame of reference is located at the starting point and the sprinter starts from rest, then, x0 and v0 are equal to zero:
x = 1/2 · a · t²
At t = 9.9 s, x = 71 m
71 m = 1/2 · a · (9.9 s)²
2 · 71 m / (9.9 s)² = a
a = 1.4 m/s²
The acceleration of the sprinter is 1.4 m/s²
Answer:
Explanation:
Given
Temperature of gas 
Volume of gas 
no of moles of gas 
Using Ideal gas Equation to find the Pressure of gas

where P=Absolute Pressure
V=Volume
R=Universal gas constant
T=Temperature



And we know Atmospheric Pressure is 
Therefore Gauge pressure is given by



Answer:
I gonna give you the number so but you need to round 6.19047619048
Explanation:
- This is a speed formula so you would use the formula speed=distance/time
- You need to rearrange it to time=distance/speed
- So you need to divide 13m by 2.1 m/s