1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anon25 [30]
3 years ago
14

A sprinter in a 100-m race accelerates uniformly for the first 71 m and then runs with constant velocity. The sprinter’s time fo

r the first 71 m is 9.9 s. Determine his acceleration.
Physics
1 answer:
adoni [48]3 years ago
3 0

Answer:

The acceleration of the sprinter is 1.4 m/s²

Explanation:

Hi there!

The equation of position of the sprinter is the following:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the sprinter at a time t.

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

Since the origin of the frame of reference is located at the starting point and the sprinter starts from rest, then, x0 and v0 are equal to zero:

x = 1/2 · a · t²

At t = 9.9 s, x = 71 m

71 m = 1/2 · a · (9.9 s)²

2 · 71 m / (9.9 s)² = a

a = 1.4 m/s²

The acceleration of the sprinter is 1.4 m/s²

You might be interested in
Please help ASAP- A book has a mass of 5 kg, a baby has a mass of 5 kg. Which one weighs more?
Sphinxa [80]

Answer:

Same mass

Explanation:

5kg and 5kg are the same that's the explanation

7 0
3 years ago
Read 2 more answers
As time goes on, the ENTROPY in a closed system should increase. This is because of which Law?
olga_2 [115]

Answer:

The answer is D

The second law of thermodynamics

5 0
3 years ago
Fossils found in the La Brea tar pits indicate a California climate that was A) similar to today's climate. B) similar to the pr
NikAS [45]

Answer:

i believe it is D but not 100% sure

Explanation:

3 0
3 years ago
Read 2 more answers
In order to determine the mass moment of inertia of a flywheel of radius 600 mm, a 12-kg block is attached to a wire that is wra
shtirl [24]

Answer:

Explanation:

Given that,

When Mass of block is 12kg

M = 12kg

Block falls 3m in 4.6 seconds

When the mass of block is 24kg

M = 24kg

Block falls 3m in 3.1 seconds

The radius of the wheel is 600mm

R = 600mm = 0.6m

We want to find the moment of inertia of the flywheel

Taking moment about point G.

Then,

Clockwise moment = Anticlockwise moment

ΣM_G = Σ(M_G)_eff

M•g•R - Mf = I•α + M•a•R

Relationship between angular acceleration and linear acceleration

a = αR

α = a / R

M•g•R - Mf = I•a / R + M•a•R

Case 1, when y = 3 t = 4.6s

M = 12kg

Using equation of motion

y = ut + ½at², where u = 0m/s

3 = ½a × 4.6²

3 × 2 = 4.6²a

a = 6 / 4.6²

a = 0.284 m/s²

M•g•R - Mf = I•a / R + M•a•R

12 × 9.81 × 0.6 - Mf = I × 0.284/0.6 + 12 × 0.284 × 0.6

70.632 - Mf = 0.4726•I + 2.0448

Re arrange

0.4726•I + Mf = 70.632-2.0448

0.4726•I + Mf = 68.5832 equation 1

Second case

Case 2, when y = 3 t = 3.1s

M= 24kg

Using equation of motion

y = ut + ½at², where u = 0m/s

3 = ½a × 3.1²

3 × 2 = 3.1²a

a = 6 / 3.1²

a = 0.6243 m/s²

M•g•R - Mf = I•a / R + M•a•R

24 × 9.81 × 0.6 - Mf = I × 0.6243/0.6 + 24 × 0.6243 × 0.6

141.264 - Mf = 1.0406•I + 8.99

Re arrange

1.0406•I + Mf = 141.264 - 8.99

1.0406•I + Mf = 132.274 equation 2

Solving equation 1 and 2 simultaneously

Subtract equation 1 from 2,

Then, we have

1.0406•I - 0.4726•I = 132.274 - 68.5832

0.568•I = 63.6908

I = 63.6908 / 0.568

I = 112.13 kgm²

8 0
4 years ago
According to Newton’s law of universal gravitation, which statements are true?
andreyandreev [35.5K]

Before we solve this, we should know this fact:

According to Newton's Law of Gravitation, the force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. The force acts along the line joining the centres of the two objects. It can be shown by this:

F ∝ \frac{Mm}{ {d}^{2} }

Now, let us check all the options.

A. As we move to higher altitudes, the force of gravity on us decreases.

<em>This </em><em>statement </em><em>is </em><em>true.</em>

The force of gravity is inversely proportional to the square of distance from the centre of the earth. If, we go up the surface of the earth, the distance from the centre of the earth increases and hence the value of force of gravity decrease. So, force of gravity decreases with altitude.

B. As we move to higher altitudes, the force of gravity on us increases.

<em>This </em><em>statement</em><em> </em><em>is </em><em>false.</em>

We have already got the result in option A. that the force of gravity decreases with altitude. It never increases with altitude.

C. As we gain mass, the force of gravity on us decreases.

<em>This </em><em>statement</em><em> </em><em>is </em><em>false.</em>

The force of gravity is directly proportional to the product of the masses. So, if increase our mass, then the force of gravity will also increase and if we decrease our mass, then the force of gravity decreases.

D. As we gain mass, the force of gravity on us increases.

<em>This </em><em>statement</em><em> is</em><em> </em><em>true.</em>

As mentioned earlier in option C., the force of gravity is directly proportional to the product of the masses of the earth and another object. So, as we gain mass, the force of gravity on us increases.

E. As we move faster, the force of gravity on us increases.

<em>This </em><em>statement</em><em> is</em><em> </em><em>true</em><em>.</em>

Here, we have to consider a different formula. According to Newton's Second Law,

F = ma, where F is the force, m is the mass and a is the acceleration.

In other words,

F ∝ a, i.e., force is directly proportional to acceleration.

We know, acceleration is the rate of change of velocity of an body within a time period.

So, if speed is increased, then acceleration will also be greater, which results in the increase of force. So, as we move faster, the force of gravity on us increases.

<u>Answers:</u>

A: As we move to higher altitudes, the force of gravity on us decreases.

D: As we gain mass, the force of gravity on us increases.

E: As we move faster, the force of gravity on us increases.

Hope you could understand.

If you have any query, feel free to ask.

7 0
2 years ago
Other questions:
  • Object A attracts object B with a gravitational force of 10 newtons from a given distance. If the distance between the two objec
    8·1 answer
  • From Doppler shifts of the spectral lines in the light coming from the east and west edges of the Sun, astronomers find that the
    13·1 answer
  • One railroad car rolls towards another. Describe the properties of the first car that determine its momentum and how it would im
    10·1 answer
  • "A window washer pulls herself upward using the bucket-pulley apparatus. The mass of the person plus the bucket is 65 kg.
    7·2 answers
  • . A 5 kg turkey and a 3.5 kg turkey are suspended on opposite sides of a single pulley.
    9·1 answer
  • Describe Newton's law of gravitation and its application?​
    12·1 answer
  • What is the velocity of a car with a momentum of 100 kg*m/s and a mass of 35kg?
    14·1 answer
  • Falling Faster
    15·1 answer
  • How u do this atomic mass
    14·2 answers
  • When a low-pressure gas of hydrogen atoms is placed in a tube and a large voltage is applied to the end of the tube, the atoms w
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!