It means that there's something else besides speed that contributes to reaction distance. So even when speed is zero, reaction distance is still not zero.
Answer:last choice is correct. Work is equally to force times distance
Explanation:to generalize, W is equal to to force as a function of distance integrated over distance. Work is equivilent to energy. See work/force equivalency
Draw a vector diagram. The net force on particle 1 = F12 + F13 + F14 These forces have to be added as vectors.
We will resolve our forces along the direction 1-4 F12 (tot) = -kQq / a^2 in the direction of particle 4 F12 = -kQq *sin (45) / a^2 F12 = -kQq /( a^2 * sqrt(2) )
By symetry this is the same as F13 F13 = -kQq /( a^2 * sqrt(2) )
F14 = -kQQ / (Sqrt(2)*a) ^ 2
For net force on particle 1 :
F12+F13+F14 = 0 -2kQq /( a^2 * sqrt(2) ) + -kQQ / (Sqrt(2)*a) ^ 2 = 0
Some simple manipulation should give you :
Q/q = -2 sqrt(2)
Yes. It r<span>efers to any of the temperatures assigned to a number of reproducible equilibrium states on the International Practical Temperature Scale</span><span>
In short, Your Answer would be "True"
Hope this helps!</span>
Answer: arrange systematically in groups; separate according to type, class, etc.
Explanation:
i hooked this up btw