Write the equation x^2 - 10x + 17 = 0 in the form (x+p)^2 = q (50 points!)
2 answers:
Answer: (x-5)²=8
Step-by-step explanation:
x²-10x+17=0
x²-2(x)(5)+5²-5²+17=0
(x²-2(x)(5)+5²)-25+17=0
(x-5)²-8=0
(x-5)²-8+8=0+8
(x-5)²=8
Answer:
(x - 5)² = 8
--------------------------
Given
Expression x² - 10x +17.
Convert this to vertex form by completing the square.
Recall identity (a ± b)² = a² ± 2ab + b² and apply as given below:
x² - 10x + 17 =
x² - 2*5*x + 5² - 5² + 17 =
(x - 5)² - 25 + 17 = (x - 5)² - 8
(x - 5)² = 8
You might be interested in
Answer:
-25/21
Step-by-step explanation:
m=(y2-y1)/(x2-x1)=(15-(-10))/(-15-6)=(15+10)/-21=25/-21
The answer will be 74 hope this help :)
Angle ABG because ABG+ABE= 180
Answer:

Step-by-step explanation: