Answer:
(a)

(b)
1120 N
Explanation:
Change in velocity,
is given by subtracting the initial velocity from the final velocity and expressed as 
Where v represent the velocity and subscripts f and i represent final and initial respectively. Since the ball finally comes to rest, its final velocity is zero. Substituting 0 for final velocity and the given figure of 8 m/s for initial velocity then the change in velocity is given by

To find
then we substitute 7 kg for m and -8 m/s for
therefore 
(b)
The impact force, F is given as the product of mass and acceleration. Here, acceleration is given by dividing the change in velocity by time ie

Substituting t with 0.05 s then 
Since F=ma then substituting m with 7 Kg we get that F=7*-160=-1120 N
Therefore, the impact force is equivalent to 1120 N
Answer:
4.6834625323 m/s
0 m/s
Explanation:
s = Displacement
t = Time
Velocity is given by

The bird's average velocity for the return flight is 4.6834625323 m/s
In the whole episode the bird went 5220 km away from its nest and came back. This means the displacement is zero.
Hence, the average velocity for the whole episode is 0 m/s
Answer:
Y component = 32.37
Explanation:
Given:
Angle of projection of the rocket is, 
Initial velocity of the rocket is, 
A vector at an angle
with the horizontal can be resolved into mutually perpendicular components; one along the horizontal direction and the other along the vertical direction.
If a vector 'A' makes angle
with the horizontal, then the horizontal and vertical components are given as:

Here, as the velocity is a vector quantity and makes an angle of 33.6 with the horizontal, its Y component is given as:

Plug in the given values and solve for
. This gives,

Therefore, the Y component of initial velocity is 32.37.
The answer would be 54 m/s as the maximum speed