Answer:
1. is the age group 35 and 44
2. is 2006 i think its 2006 i cant really tell in the picture but its the one before the last one!
Answer:
The energy returns to the weightlifter's muscles, where it is dissipated as heat.
Explanation:
The energy returns to the weightlifter's muscles, where it is dissipated as heat. As long as the weightlifter controls the weight's descent, their muscles are acting as an overdamped shock absorber, as if the weight were sitting on a piston containing very thick fluid, slowly compressing it downward (and slightly heating up the fluid in the process). Since muscles are complicated biological systems and not simple pistons, they require metabolic energy to maintain tension throughout the controlled descent, so the weightlifter feels like they're putting energy into the weight, even though the weight's gravitational potential energy is being converted into heat within the lifter's muscles.
Answer:
- Fx = -9.15 N
- Fy = 1.72 N
- F∠γ ≈ 9.31∠-10.6°
Explanation:
You apparently want the sum of forces ...
F = 8.80∠-56° +7.00∠52.8°
Your angle reference is a bit unconventional, so we'll compute the components of the forces as ...
f∠α = (-f·cos(α), -f·sin(α))
This way, the 2nd quadrant angle that has a negative angle measure will have a positive y component.
= -8.80(cos(-56°), sin(-56°)) -7.00(cos(52.8°), sin(52.8°))
≈ (-4.92090, 7.29553) +(-4.23219, -5.57571)
≈ (-9.15309, 1.71982)
The resultant component forces are ...
Then the magnitude and direction of the resultant are
F∠γ = (√(9.15309² +1.71982²))∠arctan(-1.71982/9.15309)
F∠γ ≈ 9.31∠-10.6°
Incompressible. Compressibility is determine by the amount of space between particles in each state.
Answer: C
Explanation:
Find the acceleration using this kinematic equation:

Now use this kinematic equation to find the displacement:
