Answer:
The final pressure of the gas is 9.94 atm.
Explanation:
Given that,
Weight of argon = 0.16 mol
Initial volume = 70 cm³
Angle = 30°C
Final volume = 400 cm³
We need to calculate the initial pressure of gas
Using equation of ideal gas


Where, P = pressure
R = gas constant
T = temperature
Put the value in the equation



We need to calculate the final temperature
Using relation pressure and volume



Hence, The final pressure of the gas is 9.94 atm.
Answer:
(a) Wavelength is 0.436 m
(b) Length is 0.872 m
(c) 11.518 m/s
Solution:
As per the question:
The eqn of the displacement is given by:
(1)
n = 4
Now,
We know the standard eqn is given by:
(2)
Now, on comparing eqn (1) and (2):
A = 1.22 cm
K = 

where
A = Amplitude
K = Propagation constant
= angular velocity
Now, to calculate the string's wavelength,
(a) 
where
K = propagation vector


(b) The length of the string is given by:


(c) Now, we first find the frequency of the wave:



Now,
Speed of the wave is given by:


Answer:
How long does the ball fall is t_2 = 13.66 (s).
From what height is the ball originally dropped is h= 913.90 (m).
Explanation: