a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.
Answer:
72 km/hr. ...jshdhdhddjidididdiididudd
Answer:
a) m =1 θ = sin⁻¹ λ / d, m = 2 θ = sin⁻¹ ( λ / 2d)
, c) m = 3
Explanation:
a) In the interference phenomenon the maxima are given by the expression
d sin θ = m λ
the maximum for m = 1 is at the angle
θ = sin⁻¹ λ / d
the second maximum m = 2
θ = sin⁻¹ ( λ / 2d)
the third maximum m = 3
θ = sin⁻¹ ( λ / 3d)
the fourth maximum m = 4
θ = sin⁻¹ ( λ / 4d)
b) If we take into account the effect of diffraction, the intensity of the maximums is modulated by the envelope of the diffraction of each slit.
I = I₀ cos² (Ф) (sin x / x)²
Ф = π d sin θ /λ
x = pi a sin θ /λ
where a is the width of the slits
with the values of part a are introduced in the expression and we can calculate intensity of each maximum
c) The interference phenomenon gives us maximums of equal intensity and is modulated by the diffraction phenomenon that presents a minimum, when the interference reaches this minimum and is no longer present
maximum interference d sin θ = m λ
first diffraction minimum a sin θ = λ
we divide the two expressions
d / a = m
In our case
3a / a = m
m = 3
order three is no longer visible
Answer:
Part a)

Part B)

Part c)

Explanation:
Part a)
As we know that

so we will have





Part B)
Angular speed of the yo-yo

so we have


Part c)
Tangential acceleration is given as



Answer:
We define voltage as the amount of potential energy between two points on a circuit. One point has more charge than another. This difference in charge between the two points is called voltage.