Answer
Length = 10 ft
Width = 5 ft
Explanation
Area of the rectangle given = 50 ft²
Let the width of the rectangle be x
So this means the length of the rectangle will be 3x - 5
What to find:
The dimensions of the rectangle.
Step-by-step solution:
Area of a rectangle = length x width
i.e A = L x W
Put A = 50, L = 3x - 5, W = x into the formula.
![\begin{gathered} 50=(3x-5)x \\ 50=3x^2-5x \\ 3x^2-5x-50=0 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%2050%3D%283x-5%29x%20%5C%5C%2050%3D3x%5E2-5x%20%5C%5C%203x%5E2-5x-50%3D0%20%5Cend%7Bgathered%7D)
The quadratic equation can now be solve using factorization method:
![\begin{gathered} 3x^2-5x-50=0 \\ 3x^2-15x+10x-50=0 \\ 3x(x-5)+10(x-5)=0 \\ (3x+10)(x-5)=0 \\ 3x+10=0\text{ }or\text{ }x-5=0 \\ 3x=-10\text{ }or\text{ }x=5 \\ x=-\frac{10}{3}\text{ }or\text{ }x=5 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%203x%5E2-5x-50%3D0%20%5C%5C%203x%5E2-15x%2B10x-50%3D0%20%5C%5C%203x%28x-5%29%2B10%28x-5%29%3D0%20%5C%5C%20%283x%2B10%29%28x-5%29%3D0%20%5C%5C%203x%2B10%3D0%5Ctext%7B%20%7Dor%5Ctext%7B%20%7Dx-5%3D0%20%5C%5C%203x%3D-10%5Ctext%7B%20%7Dor%5Ctext%7B%20%7Dx%3D5%20%5C%5C%20x%3D-%5Cfrac%7B10%7D%7B3%7D%5Ctext%7B%20%7Dor%5Ctext%7B%20%7Dx%3D5%20%5Cend%7Bgathered%7D)
Since the dimension can not be negative, hence the value of x will be = 5.
Therefore, the dimensions of the rectangle will be: