Answer:
y = 2/3 x -2
Step-by-step explanation:
Slope intercept form is y = mx+b where m is the slope and b is the y intercept
We need to solve for y
2x-3y = 6
Subtract 2x from each side
2x-2x-3y=-2x+6
-3y = -2x+6
Divide by -3
-3y/-3 = -2/-3x+6 /-3
y = 2/3 x -2
The slope is 2/3 and the y intercept is -2
Answer:
The function touches the damping factor
at x=
and x=
The x-intercept of f(x) is
at x=
Step-by-step explanation:
Given function is f(x)=
and damping factor as y=
and y=
To find when function touches the damping factor:
For f(x)=
and y=
Equating the both the equation,


x=
For f(x)=
and y=
Equating the both the equation,


x=
Therefore, The function touches the damping factor x=
and x=
To find x-intercept of f(x):
For x-intercept, y=0
f(x)=
y=

Hence,
is always greater than zero.
Therefore,
x=
Thus,
The x-intercept of f(x) is at x=
9514 1404 393
Answer:
"complete the square" to put in vertex form
Step-by-step explanation:
It may be helpful to consider the square of a binomial:
(x +a)² = x² +2ax +a²
The expression x² +x +1 is in the standard form of the expression on the right above. Comparing the coefficients of x, we see ...
2a = 1
a = 1/2
That means we can write ...
(x +1/2)² = x² +x +1/4
But we need x² +x +1, so we need to add 3/4 to the binomial square in order to make the expressions equal:

_____
Another way to consider this is ...
x² +bx +c
= x² +2(b/2)x +(b/2)² +c -(b/2)² . . . . . . rewrite bx, add and subtract (b/2)²*
= (x +b/2)² +(c -(b/2)²)
for b=1, c=1, this becomes ...
x² +x +1 = (x +1/2)² +(1 -(1/2)²)
= (x +1/2)² +3/4
_____
* This process, "rewrite bx, add and subtract (b/2)²," is called "completing the square"—especially when written as (x-h)² +k, a parabola with vertex (h, k).
Answer:
.5, sqrt 14, 4
Step-by-step explanation:
.5, 3.7416, 4
The correct answer is C.
You can tell this by factoring the equation to get the zeros. To start, pull out the greatest common factor.
f(x) = x^4 + x^3 - 2x^2
Since each term has at least x^2, we can factor it out.
f(x) = x^2(x^2 + x - 2)
Now we can factor the inside by looking for factors of the constant, which is 2, that add up to the coefficient of x. 2 and -1 both add up to 1 and multiply to -2. So, we place these two numbers in parenthesis with an x.
f(x) = x^2(x + 2)(x - 1)
Now we can also separate the x^2 into 2 x's.
f(x) = (x)(x)(x + 2)(x - 1)
To find the zeros, we need to set them all equal to 0
x = 0
x = 0
x + 2 = 0
x = -2
x - 1 = 0
x = 1
Since there are two 0's, we know the graph just touches there. Since there are 1 of the other two numbers, we know that it crosses there.