First I'd expand the brackets so that you can re-simplify the values, so:
(2x + 3)(3x + 4)
6x^2 + 9x + 8x + 12
6x^2 + 17x + 12
The answer A. 2x(3x + 4) + 3(3x + 4) can be simplified the same way, with 6x^2 + 8x + 9x + 12, and so the answer is A. I hope this helps!
It is often more convenient to evaluate a polynomial when it is written is "Horner form."
... f(x) = (((10x -4)x -8)x +3)x -6
The graphs offered can be distinguished by their values of f(1) and f(2), so our table can be a short one.
... f(1) = (((10·1 -4)1 -8)1 +3)1 -6 = -5 . . . . . . . eliminates graph d
... f(2) = (((10·2 -4)2 -8)2 +3)2 -6 = 96 . . . . eliminates graphs a and c
The appropriate choice is b.
Answer:
- Both expressions should be evaluated with two different values. If for each substituted value, the final values of the expressions are the same, then the two expressions must be equivalent.
Step-by-step explanation:
<u>Given expressions</u>
- 4x - x + 5 = 3x + 5
- 8 - 3x - 3 = -3x + 5
Compared, we see the expressions are different as 3x and -3x have different coefficient
<u>Answer options</u>
Both expressions should be evaluated with one value. If the final values of the expressions are both positive, then the two expressions must be equivalent.
- Incorrect. Positive outcome doesn't mean equivalent
----------------------------------------
Both expressions should be evaluated with one value. If the final values of the expressions are the same, then the two expressions must be equivalent.
- Incorrect. There are 2 values- variable and constant
----------------------------------------
Both expressions should be evaluated with two different values. If for each substituted value, the final values of the expressions are positive, then the two expressions must be equivalent.
- Incorrect. Positive outcome doesn't mean equivalent.
----------------------------------------
Both expressions should be evaluated with two different values. If for each substituted value, the final values of the expressions are the same, then the two expressions must be equivalent.
Answer:
the perimeter is 87
Step-by-step explanation: