Its 20400
× 10
That equals 204,000. Hope I helped.
Answer:
![x^2 + 4x + y^2 +8y = 0](https://tex.z-dn.net/?f=x%5E2%20%2B%204x%20%2B%20y%5E2%20%2B8y%20%20%3D%20%200)
Step-by-step explanation:
Given
![A = (-1,-2)](https://tex.z-dn.net/?f=A%20%3D%20%28-1%2C-2%29)
![B = (2,4)](https://tex.z-dn.net/?f=B%20%3D%20%282%2C4%29)
![AP:BP = 1 : 2](https://tex.z-dn.net/?f=AP%3ABP%20%3D%201%20%3A%202)
Required
The locus of P
![AP:BP = 1 : 2](https://tex.z-dn.net/?f=AP%3ABP%20%3D%201%20%3A%202)
Express as fraction
![\frac{AP}{BP} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7BAP%7D%7BBP%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
Cross multiply
![2AP = BP](https://tex.z-dn.net/?f=2AP%20%3D%20BP)
Calculate AP and BP using the following distance formula:
![d = \sqrt{(x - x_1)^2 + (y - y_1)^2}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x%20-%20x_1%29%5E2%20%2B%20%28y%20-%20y_1%29%5E2%7D)
So, we have:
![2 * \sqrt{(x - -1)^2 + (y - -2)^2} = \sqrt{(x - 2)^2 + (y - 4)^2}](https://tex.z-dn.net/?f=2%20%2A%20%5Csqrt%7B%28x%20-%20-1%29%5E2%20%2B%20%28y%20-%20-2%29%5E2%7D%20%3D%20%5Csqrt%7B%28x%20-%202%29%5E2%20%2B%20%28y%20-%204%29%5E2%7D)
![2 * \sqrt{(x +1)^2 + (y +2)^2} = \sqrt{(x - 2)^2 + (y - 4)^2}](https://tex.z-dn.net/?f=2%20%2A%20%5Csqrt%7B%28x%20%2B1%29%5E2%20%2B%20%28y%20%2B2%29%5E2%7D%20%3D%20%5Csqrt%7B%28x%20-%202%29%5E2%20%2B%20%28y%20-%204%29%5E2%7D)
Take square of both sides
![4 * [(x +1)^2 + (y +2)^2] = (x - 2)^2 + (y - 4)^2](https://tex.z-dn.net/?f=4%20%2A%20%5B%28x%20%2B1%29%5E2%20%2B%20%28y%20%2B2%29%5E2%5D%20%3D%20%28x%20-%202%29%5E2%20%2B%20%28y%20-%204%29%5E2)
Evaluate all squares
![4 * [x^2 + 2x + 1 + y^2 +4y + 4] = x^2 - 4x + 4 + y^2 - 8y + 16](https://tex.z-dn.net/?f=4%20%2A%20%5Bx%5E2%20%2B%202x%20%2B%201%20%2B%20y%5E2%20%2B4y%20%2B%204%5D%20%3D%20x%5E2%20-%204x%20%2B%204%20%2B%20y%5E2%20-%208y%20%2B%2016)
Collect and evaluate like terms
![4 * [x^2 + 2x + y^2 +4y + 5] = x^2 - 4x + y^2 - 8y + 20](https://tex.z-dn.net/?f=4%20%2A%20%5Bx%5E2%20%2B%202x%20%2B%20y%5E2%20%2B4y%20%2B%205%5D%20%3D%20x%5E2%20-%204x%20%2B%20y%5E2%20-%208y%20%2B%2020)
Open brackets
![4x^2 + 8x + 4y^2 +16y + 20 = x^2 - 4x + y^2 - 8y + 20](https://tex.z-dn.net/?f=4x%5E2%20%2B%208x%20%2B%204y%5E2%20%2B16y%20%2B%2020%20%3D%20x%5E2%20-%204x%20%2B%20y%5E2%20-%208y%20%2B%2020)
Collect like terms
![4x^2 - x^2 + 8x + 4x + 4y^2 -y^2 +16y + 8y + 20 - 20 = 0](https://tex.z-dn.net/?f=4x%5E2%20-%20x%5E2%20%2B%208x%20%2B%204x%20%2B%204y%5E2%20-y%5E2%20%2B16y%20%2B%208y%20%20%2B%2020%20-%2020%20%3D%20%200)
![3x^2 + 12x + 3y^2 +24y = 0](https://tex.z-dn.net/?f=3x%5E2%20%2B%2012x%20%2B%203y%5E2%20%2B24y%20%20%3D%20%200)
Divide through by 3
![x^2 + 4x + y^2 +8y = 0](https://tex.z-dn.net/?f=x%5E2%20%2B%204x%20%2B%20y%5E2%20%2B8y%20%20%3D%20%200)
Answer:
Srry I can’t graph it but this is how it would look like it would be a horizontal line with the x-intercept of -5
Answer:
![\bar X_B = \frac{\sum_{i=1}^5 X_i}{5} =\frac{500+200+250+275+300}{5}=\frac{1525}{5}=305](https://tex.z-dn.net/?f=%20%5Cbar%20X_B%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E5%20X_i%7D%7B5%7D%20%3D%5Cfrac%7B500%2B200%2B250%2B275%2B300%7D%7B5%7D%3D%5Cfrac%7B1525%7D%7B5%7D%3D305)
![s_B = \sqrt{\frac{\sum_{i=1}^5 (X_i-\bar X)^2}{n-1}}=\sqrt{\frac{(500-305)^2 +(200-305)^2 +(250-305)^2 +(275-305)^2 +(300-305)^2)}{5-1}} = 115.108](https://tex.z-dn.net/?f=%20s_B%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E5%20%28X_i-%5Cbar%20X%29%5E2%7D%7Bn-1%7D%7D%3D%5Csqrt%7B%5Cfrac%7B%28500-305%29%5E2%20%2B%28200-305%29%5E2%20%2B%28250-305%29%5E2%20%2B%28275-305%29%5E2%20%2B%28300-305%29%5E2%29%7D%7B5-1%7D%7D%20%3D%20115.108)
![\bar X_A = \frac{\sum_{i=1}^5 X_i}{5} =\frac{-500+200+250+275+300}{5}=\frac{525}{5}=105](https://tex.z-dn.net/?f=%20%5Cbar%20X_A%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E5%20X_i%7D%7B5%7D%20%3D%5Cfrac%7B-500%2B200%2B250%2B275%2B300%7D%7B5%7D%3D%5Cfrac%7B525%7D%7B5%7D%3D105)
![s_A = \sqrt{\frac{\sum_{i=1}^5 (X_i-\bar X)^2}{n-1}}=\sqrt{\frac{(-500-105)^2 +(200-105)^2 +(250-105)^2 +(275-105)^2 +(300-105)^2)}{5-1}} = 340.221](https://tex.z-dn.net/?f=%20s_A%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E5%20%28X_i-%5Cbar%20X%29%5E2%7D%7Bn-1%7D%7D%3D%5Csqrt%7B%5Cfrac%7B%28-500-105%29%5E2%20%2B%28200-105%29%5E2%20%2B%28250-105%29%5E2%20%2B%28275-105%29%5E2%20%2B%28300-105%29%5E2%29%7D%7B5-1%7D%7D%20%3D%20340.221)
The absolute difference is:
![Abs = |340.221-115.108|= 225.113](https://tex.z-dn.net/?f=%20Abs%20%3D%20%7C340.221-115.108%7C%3D%20225.113)
If we find the % of change respect the before case we have this:
![\% Change = \frac{|340.221-115.108|}{115.108} *100 = 195.57\%](https://tex.z-dn.net/?f=%20%5C%25%20Change%20%3D%20%5Cfrac%7B%7C340.221-115.108%7C%7D%7B115.108%7D%20%2A100%20%3D%20195.57%5C%25)
So then is a big change.
Step-by-step explanation:
The subindex B is for the before case and the subindex A is for the after case
Before case (with 500)
For this case we have the following dataset:
500 200 250 275 300
We can calculate the mean with the following formula:
![\bar X_B = \frac{\sum_{i=1}^5 X_i}{5} =\frac{500+200+250+275+300}{5}=\frac{1525}{5}=305](https://tex.z-dn.net/?f=%20%5Cbar%20X_B%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E5%20X_i%7D%7B5%7D%20%3D%5Cfrac%7B500%2B200%2B250%2B275%2B300%7D%7B5%7D%3D%5Cfrac%7B1525%7D%7B5%7D%3D305)
And the sample deviation with the following formula:
![s_B = \sqrt{\frac{\sum_{i=1}^5 (X_i-\bar X)^2}{n-1}}=\sqrt{\frac{(500-305)^2 +(200-305)^2 +(250-305)^2 +(275-305)^2 +(300-305)^2)}{5-1}} = 115.108](https://tex.z-dn.net/?f=%20s_B%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E5%20%28X_i-%5Cbar%20X%29%5E2%7D%7Bn-1%7D%7D%3D%5Csqrt%7B%5Cfrac%7B%28500-305%29%5E2%20%2B%28200-305%29%5E2%20%2B%28250-305%29%5E2%20%2B%28275-305%29%5E2%20%2B%28300-305%29%5E2%29%7D%7B5-1%7D%7D%20%3D%20115.108)
After case (With -500 instead of 500)
For this case we have the following dataset:
-500 200 250 275 300
We can calculate the mean with the following formula:
![\bar X_A = \frac{\sum_{i=1}^5 X_i}{5} =\frac{-500+200+250+275+300}{5}=\frac{525}{5}=105](https://tex.z-dn.net/?f=%20%5Cbar%20X_A%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E5%20X_i%7D%7B5%7D%20%3D%5Cfrac%7B-500%2B200%2B250%2B275%2B300%7D%7B5%7D%3D%5Cfrac%7B525%7D%7B5%7D%3D105)
And the sample deviation with the following formula:
![s_A = \sqrt{\frac{\sum_{i=1}^5 (X_i-\bar X)^2}{n-1}}=\sqrt{\frac{(-500-105)^2 +(200-105)^2 +(250-105)^2 +(275-105)^2 +(300-105)^2)}{5-1}} = 340.221](https://tex.z-dn.net/?f=%20s_A%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E5%20%28X_i-%5Cbar%20X%29%5E2%7D%7Bn-1%7D%7D%3D%5Csqrt%7B%5Cfrac%7B%28-500-105%29%5E2%20%2B%28200-105%29%5E2%20%2B%28250-105%29%5E2%20%2B%28275-105%29%5E2%20%2B%28300-105%29%5E2%29%7D%7B5-1%7D%7D%20%3D%20340.221)
And as we can see we have a significant change between the two values for the two cases.
The absolute difference is:
![Abs = |340.221-115.108|= 225.113](https://tex.z-dn.net/?f=%20Abs%20%3D%20%7C340.221-115.108%7C%3D%20225.113)
If we find the % of change respect the before case we have this:
![\% Change = \frac{|340.221-115.108|}{115.108} *100 = 195.57\%](https://tex.z-dn.net/?f=%20%5C%25%20Change%20%3D%20%5Cfrac%7B%7C340.221-115.108%7C%7D%7B115.108%7D%20%2A100%20%3D%20195.57%5C%25)
So then is a big change.
Answer:
Radius = 6.5cm
Diameter = 13cm (given)
Step-by-step explanation:
The diameter is the length of one side of a circle to the other. It's already given in the diagram as 13cm.
The radius is half of the diameter. 13 divided by 2 is 6.5cm.