1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zepelin [54]
3 years ago
15

Write two expressions to show a number increased by 11. Then, draw models to prove that both expressions represent the same thin

g.

Mathematics
1 answer:
ioda3 years ago
5 0

Answer:

n + 11 and 11 + n

Step-by-step explanation:

Let n be the unknown number,

n is increased by 11,

That is, n + 11

By the commutative property of addition,

The expression would be,

11 + n

For drawing a model that shows n + 11

Take two boxes in which first shows n and second shows 11 and add them,

Similarly, for showing 11 + n, take first box that shows 11 and second box that shows n then add them.

You might be interested in
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
3 years ago
Find the volume of the given prism. Round to the nearest tenth if necessary.
Alisiya [41]
Hello!

To find the volume of a rectangular prism you do hwl

h is height
w is width
l is length

4.2 * 5.3 * 12.1 = 269.346

The answer is 269.3 cubic centimeters

Hope this helps!
6 0
3 years ago
Plz help me with Q:13 And Q:14
PolarNik [594]
For question 13, you need to look at all the numbers that are less than 1/2 and then count the number of marks in total .
Answer: 7 B
For question 14, you need to first make an equation that suits the circumstances and the situations in this problem.
$25+$24x=$193
$24x=$168
x=7 weeks
x stands for the number of weeks that she has to wait for in order to save enough money to purchase the camera.
Answer: 7 weeks A
5 0
3 years ago
Read 2 more answers
The ratio of the geometric mean and arithmetic mean of two numbers is 3:5, find the ratio of the smaller number to the larger nu
IgorC [24]

Answer:

\frac{1}{9}

Step-by-step explanation:

Let the numbers be x,y, where x>y

The geometric mean is

\sqrt{xy}

The Arithmetic mean is

\frac{x + y}{2}

The ratio of the geometric mean and arithmetic mean of two numbers is 3:5.

\frac{ \sqrt{xy} }{ \frac{x + y}{2} }  =  \frac{3}{5}

We can write the equation;

\sqrt{xy}  = 3

or

xy = 9 -  -  - (2)

l

and

\frac{x + y}{2}  = 5

or

x + y = 10 -  -  - (2)

Make y the subject in equation 2

y = 10 - x -  -  - (3)

Put equation 3 in 1

x(10 - x) = 9

10x -  {x}^{2}  = 9

{x}^{2}  - 10x + 9 = 0

(x - 9)(x - 1) = 0

x =1  \: or \: 9

When x=1, y=10-1=9

When x=9, y=10-9=1

Therefore x=9, and y=1

The ratio of the smaller number to the larger number is

\frac{1}{9}

3 0
2 years ago
I need help or I will faill this
kari74 [83]

Answer:

-4x2 + 3x - 225

 ———————————————

        3    

Step-by-step explanation:

Step  1  :

               4

Simplify   —

                3

Equation at the end of step  1  :

        4            

 (x -  (— • x2)) -  75

        3            

Step  2  :

Equation at the end of step  2  :

       4x2      

 (x -  ———) -  75

        3      

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  3  as the denominator :

         x     x • 3

    x =  —  =  —————

         1       3  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • 3 - (4x2)     3x - 4x2

—————————————  =  ————————

      3              3    

Equation at the end of step  3  :

 (3x - 4x2)    

 —————————— -  75

     3          

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  3  as the denominator :

         75     75 • 3

   75 =  ——  =  ——————

         1        3    

Step  5  :

Pulling out like terms :

5.1     Pull out like factors :

  3x - 4x2  =   -x • (4x - 3)  

Adding fractions that have a common denominator :

5.2       Adding up the two equivalent fractions

-x • (4x-3) - (75 • 3)     -4x2 + 3x - 225

——————————————————————  =  ———————————————

          3                       3        

Step  6  :

Pulling out like terms :

6.1     Pull out like factors :

  -4x2 + 3x - 225  =   -1 • (4x2 - 3x + 225)  

Trying to factor by splitting the middle term

6.2     Factoring  4x2 - 3x + 225  

The first term is,  4x2  its coefficient is  4 .

The middle term is,  -3x  its coefficient is  -3 .

The last term, "the constant", is  +225  

Step-1 : Multiply the coefficient of the first term by the constant   4 • 225 = 900  

Step-2 : Find two factors of  900  whose sum equals the coefficient of the middle term, which is   -3 .

     -900    +    -1    =    -901  

     -450    +    -2    =    -452  

     -300    +    -3    =    -303  

     -225    +    -4    =    -229  

     -180    +    -5    =    -185  

     -150    +    -6    =    -156  

For tidiness, printing of 48 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Final result :

 -4x2 + 3x - 225

 ———————————————

        3        

7 0
2 years ago
Other questions:
  • Can someone please tell me the answer for this
    7·1 answer
  • Charity has 3 times as long a walk to school as Michele has and the difference between the distances they walk is ½ mile. How fa
    5·1 answer
  • Which equation describes the circle having center point (3,7) and the radius r=4 in Standard form
    5·1 answer
  • What is 3 percent of 550​
    12·2 answers
  • Work out<br> a) 1 divided by 1/9
    7·2 answers
  • If a translation maps point (3, 2) to (4, 5); or T : (3, 2) (4, 5), indicate the image for (2, 4).
    7·1 answer
  • What precent of 95 is 60.8​
    6·1 answer
  • Please help will give brainliest
    9·2 answers
  • Your bike was originally purchased for $1,200. It loses about 8% of its original value each year. Write an equation to represent
    14·1 answer
  • PLEASE ANSWER AND EXPLAIN I’LL MARK BRAINLIEST
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!