Answer:
15.9 g
Explanation:
(Take the atomic mass of C=12.0, H=1.0, O=16.0)
no. of moles = mass / molar mass
no. of moles of octane used = 11.2 / (12.0x8 + 1x18)
= 0.0982456 mol
Since oxygen is in excess and octane is the limiting reagent, the no. of moles of H2O depends on the no. of moles of octane used.
From the balanced equation, the mole ratio of octane : water = 2:18 = 1: 9,
so this means, one mole of octane produced 9 moles of water.
Using this ratio, we can deduce that (y is the no. of moles of water produced):

y = 0.0982456x9
y= 0.88421 mol
Since mass = no. of moles x molar mass,
mass of water produced = 0.88421 x (1.0x2+16.0)
=15.9 g
When two atoms of Florine combines, they share an electron pair to complete it's octet. This result is formation of single bond between two fluorine atoms. This process is exothermic in nature, and hence, heat is liberated during the process of bond formation. <span />
The second option - electrons are the subatomic particles with the smallest mass.
Both protons and electrons have charge (protons are positive and electrons are negative)
Protons and neutrons both equal 1 amu (atomic mass unit), whereas electrons weigh about 1/1000 amu
Electrons orbit around the nucleus, whereas protons and neutrons are inside of the nucleus
And for the last option, I already answered it
Answer: -2m/s2
Explanation:
Using the following equation ; acceleration = Change in velocity / time
i.e a = v - u / t
where 'a' = acceleration
v = final velocity
u = initial velocity
t = time
Therefore; from the graph we have acceleration to be, 0 - 6m/s / 3s = -2m/s2
Answer:
Increasing temperature
Explanation:

Enthalpy of the reaction = -393.5 kJ/mol
Negative sign implies that reaction is exothermic.
Effect of change in reaction condition is explained by Le chateliers principle.
According to Le chateliers principle, if the reaction conditions of a reversible reaction in a state of dynamic equilibirum is changed, the reaction will move in a direction to counteract the change.
1. Increasing the temperature
Forward reaction is exothermic that means temperature increases in forward direction. Backward reaction will be endothermic and so there is decrease in temperature in backward direction or in left direction.
On increasing temperature, reaction will be move in direction to counteract the increased temperature, therefore reaction will move in left direction.
2. Adding O2
If O2 is added, then reaction will move in a direction in which its get consumed. So, reaction will move in forward direction or in right direction.
3. Removing C (s)
Le Chatelier's principle does not apply on solids, so removal of C(s) does not affect the equilibrium.