Answer:
p(x) = 0.6x³ - 200x² + 500x- 300
Step-by-step explanation:
Given the cost function and revenue function as:
C(x) = 500x² + 100x
R(x) = -0.6x³ + 700x² – 400x + 300
To get the profit function:
p(x) = C(x) - R(x)
p(x) = 500x² + 100x -(-0.6x³ + 700x² – 400x + 300)
open the parenthesis
p(x) = 500x² + 100x + 0.6x³ - 700x² + 400x - 300
p(x) = + 0.6x³+500x² - 700x² + 100x+ 400x- 300
p(x) = 0.6x³ - 200x² + 500x- 300
Hence the profit function is expressed as p(x) = 0.6x³ - 200x² + 500x- 300
Answer:
The probability that a family spends less than $410 per month
P( X < 410) = 0.1151
Step-by-step explanation:
<u><em>Step(i):-</em></u>
<em>Given mean of the population = 500 </em>
<em>Given standard deviation of the Population = 75</em>
Let 'X' be the variable in normal distribution

<em>Given X = $410</em>
<em></em>
<em></em>
<u><em>Step(ii):-</em></u>
The probability that a family spends less than $410 per month
P( X < 410) = P( Z < - 1.2 )
= 0.5 - A( -1.2)
= 0.5 - A(1.2)
= 0.5 - 0.3849 ( ∵from normal table)
= 0.1151
<u>Final answer:-</u>
The probability that a family spends less than $410 per month
P( X < 410) = 0.1151
Answer:
A: 12/7
Step-by-step explanation: