I believe this should be right
The length of the KN is 4.4
Step-by-step explanation:
We know from Pythagoras theorem
In a right angle ΔLMN
Base² + perpendicular² = hypotenuse
²
From the properties of triangle we also know that altitudes are ⊥ on the sides they fall.
Hence ∠LKM = ∠NKM = 90
°
Given values-
LM=12
LK=10
Let KN be “s”
⇒LN= LK + KN
⇒LN= 10+x eq 1
Coming to the Δ LKM
⇒LK²+MK²= LM²
⇒MK²= 12²-10²
⇒MK²= 44 eq 2
Now in Δ MKN
⇒MK²+ KN²= MN²
⇒44+s²= MN² eq 3
In Δ LMN
⇒LM²+MN²= LN²
Using the values of MN² and LN² from the previous equations
⇒12² + 44+s²= (10+s)
²
⇒144+44+s²= 100+s²+20s
⇒188+s²= 100+s²+20s cancelling the common term “s²”
⇒20s= 188-100
∴ s= 4.4
Hence the value of KN is 4.4
Parentheses first
9q-14+3q-3(8)=7
9q-14+3q-24=7
Combine like terms
9q + 3q - 14 - 24 = 7
12q -38=7
add 38 to both sides
12q - 38 + 38 = 7 + 38
12q = 45
divide both sides by 12
q = 45/12
q = 3.75
Answer:
2
Step-by-step explanation:
2(3x²-5)-5=9
6x²-10-5=9
6x²-15=9
6x²=9+15
6x²=24
x²=24/6
x²=4
x=2