Given:
The vertices of square WXYZ are W(1,7), X(6,5), Y(4,0), and Z(-1, 2).
Consider the rule of transformation is
.
To find:
The new coordinates.
Solution:
We have,
![(x, y)\to (x-7, y-6)](https://tex.z-dn.net/?f=%28x%2C%20y%29%5Cto%20%28x-7%2C%20y-6%29)
Using the above rule of transformation, we get
![W(1, 7)\to W'(1-7, 7-6)=W'(-6,1)](https://tex.z-dn.net/?f=W%281%2C%207%29%5Cto%20W%27%281-7%2C%207-6%29%3DW%27%28-6%2C1%29)
![X(6, 5)\to X'(6-7, 5-6)=X'(-1,-1)](https://tex.z-dn.net/?f=X%286%2C%205%29%5Cto%20X%27%286-7%2C%205-6%29%3DX%27%28-1%2C-1%29)
![Y(4, 0)\to Y'(4-7, 0-6)=Y'(-3,-6)](https://tex.z-dn.net/?f=Y%284%2C%200%29%5Cto%20Y%27%284-7%2C%200-6%29%3DY%27%28-3%2C-6%29)
![Z(-1, 2)\to Z'(-1-7, 2-6)=Z'(-8,-4)](https://tex.z-dn.net/?f=Z%28-1%2C%202%29%5Cto%20Z%27%28-1-7%2C%202-6%29%3DZ%27%28-8%2C-4%29)
Therefore, the new vertices are W'(-6,1), X'(-1,-1), Y'(-3,-6) and Z'(-8,-4).