Answer:
2
Step-by-step explanation:
i used a calculator and the rounded
Answer: 7.22
(note: this is a result after rounding. The result before rounding was 7.21875)
========================================================
Explanation:
Given Set of Values = {22, 16, 39, 35, 19, 34, 20, 26}
Add up the values: 22+16+39+35+19+34+20+26 = 211
Divide that sum by 8 as there are 8 values: 211/8 = 26.375
The mean is 26.375
Now subtract the mean from each data value. Apply the absolute value to ensure the difference is never negative
|22 - 26.375| = 4.375
|16 - 26.375| = 10.375
|39 - 26.375| = 12.625
|35 - 26.375| = 8.625
|19 - 26.375| = 7.375
|34 - 26.375| = 7.625
|20 - 26.375| = 6.375
|26 - 26.375| = 0.375
Add up those results
4.375+10.375+12.625+8.625+7.375+7.625+6.375+0.375 = 57.75
Then divide by 8
57.75/8 = 7.21875
The mean absolute deviation of the prices is 7.21875
Rounded to two decimal places, it is 7.22
Since we're talking about money, it makes sense to round to the nearest penny.
Because it's decreasing, you use the formula (1-x/100)y with x the percentage decreased which is here 40, and y the number decreased which is here 90
So we get
(1-40/100) * 90
(100/100 - 40/100) * 90
60/100 * 90
5400/100
54
So 90 decreased by 40% is 54
Hope this Helps :)
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
<h3>What is the surface area of a truncated prism?</h3>
The <em>surface</em> area of the <em>truncated</em> prism is the sum of the areas of its six faces, which are combinations of the areas of rectangles and <em>right</em> triangles. Then, we proceed to determine the <em>surface</em> area:
A = (12 cm) · (4 cm) + 2 · (3 cm) · (4 cm) + 2 · (12 cm) · (3 cm) + 2 · 0.5 · (12 cm) · (5 cm) + (5 cm) · (4 cm) + (13 cm) · (4 cm)
A = 48 cm² + 24 cm² + 72 cm² + 60 cm² + 20 cm² + 52 cm²
A = 276 cm²
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
To learn more on surface areas: brainly.com/question/2835293
#SPJ1