1) v = gt = 10*1.5 = 15 m/s
2) r = gt^2 /2 = 10*(1.5)^2 / 2 = 11.25 meters
We must know that the gravity acceleration on Jupyter is g = 24.79 m/s² , on the Earth g = 9.8 m/s² and on the moon 1.62 m/s².
The weigh of an object is given by:
P = mg
Solving for m:
m = P/g
We see that for the same weight, if gravity is less, then the amount of mass is greater, because they are inversely proportional. So we conclude that the answer is:
<h2>a 3-N bowl of ice cream on the moon </h2>
Answer:
Summarized
Explanation:
Among the many hypotheses proposed for the origin of the moon the four main are summarized as
the fission hypotheses in which moon was once a part of earth but got separated due to collision. The second hypotheses is that the moon formed along with the Earth but independently.Moon was formed else where in the solar system and got captured by the Earth's gravitational pull. The newer giant impact hypotheses suggest that a mars sized object grazed Earth, Ejecting material from both Earth and itself, that material condensed to form moon.
Answer:
a) puck is subjected to both the forces of the hockey sticks in a horizontal direction,
b)the puck does not move since the sum of the forces is zero
c) changing the magnitude or direction of its applied force
Explanation:
a) The puck is subjected to both the forces of the hockey sticks in a horizontal direction, these forces are of equal magnitude and opposite direction since the puck is at rest.
In the direction of the y-axis (perpendicular to the ice) you have the weight of the disk and the normal to this weight that are also in equilibrium.
b) the puck does not move since the sum of the forces is zero, which implies that the forces of the hockey sticks are of equal magnitude and opposite direction.
c) the player has several ways to make the puck move
* slightly changing the angle of the club and therefore the direction of the force, in this case the disc comes out in the direction of this component
* inclined the stick slightly so that the force has a vertical component and the puck jumps in this direction
* Increasing the magnitude of the force so that the puck comes out in the opposite direction to the player
* The worst case, decreasing its force to zero and the disk comes out in its direction by the other force that had the same magnitude.