1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hoochie [10]
4 years ago
5

In the circuit diagram, what does the line segment with two circles at the end represent?

Physics
2 answers:
iragen [17]4 years ago
5 0
I think it means a closed circut
Mice21 [21]4 years ago
5 0
Your answer should be a closed switch. Hope this helps!
You might be interested in
A long, straight, horizontal wire carries a left-to-right current of 40 A. If the wire is placed in a uniform magnetic field of
Drupady [299]

Answer:

4.5\times 10^{-5} T

Explanation:

We are given that

Current in wire=40 A

Magnetic field=B_1=3.5\times 10^{-5} T( vertically downward)

We have to find the resultant magnitude of the magnetic field 29 cm above the wire and 29 cm below the wire.

According to Bio-Savart law, the magnetic field exerted by the wire at distance R is given by

B_{wire}=B_2=\frac{\mu_0I}{2\pi R}

We have R=29 cm=\frac{29}{100}=0.29 m

1 m=100 cm

Substitute the values in the given formula

B_2=\frac{4\pi\times 10^{-7}\times 40}{2\times \pi\times 0.29}=\frac{2\times 40\times 10^{-7}}{0.29}=2.76\times 10^{-5} T

The resultant magnetic field is given by

B=\sqrt{B^2_1+B^2_2}

Substitute the values then we get

B=\sqrt{(3.5\times 10^{-5})^2+(2.76\times 10^{-5})^2}

B=4.5\times 10^{-5} T

The resultant magnitude of magnetic field is same above and below the wire as it is at same distance.

The resultant magnitude of the magnetic field 29 cm below the wire=4.5\times 10^{-5} T

Hence, the resultant magnitude of the magnetic field 29 cm above  the wire=4.5\times 10^{-5} T

7 0
3 years ago
The 2.50 kg cube in the figure has edge lengths d = 6.50 cm and is mounted on an axle
kozerog [31]

Answer:

0.191 s

Explanation:

The distance from the center of the cube to the upper corner is r = d/√2.

When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ.  The new vertical distance from the center to the corner is r cos θ.

Sum of the torques:

∑τ = Iα

Fr cos θ = Iα

(k r sin θ) r cos θ = Iα

kr² sin θ cos θ = Iα

k (d²/2) sin θ cos θ = Iα

For a cube rotating about its center, I = ⅙ md².

k (d²/2) sin θ cos θ = ⅙ md² α

3k sin θ cos θ = mα

3/2 k sin(2θ) = mα

For small values of θ, sin θ ≈ θ.

3/2 k (2θ) = mα

α = (3k/m) θ

d²θ/dt² = (3k/m) θ

For this differential equation, the coefficient is the square of the angular frequency, ω².

ω² = 3k/m

ω = √(3k/m)

The period is:

T = 2π / ω

T = 2π √(m/(3k))

Given m = 2.50 kg and k = 900 N/m:

T = 2π √(2.50 kg / (3 × 900 N/m))

T = 0.191 s

The period is 0.191 seconds.

7 0
3 years ago
Help me find the acceleration
ANEK [815]

a = 3.09 m/s²

<h3>Explanation</h3>

This question doesn't tell anything about how long it took for the car to go through 105 meters. As a result, the <em>timeless </em>suvat equation is likely what you need for this question.

In the <em>timeless</em> suvat equation,

a = \dfrac{v^2 - u^2}{2\; x}

where

  • a is the acceleration of the car;
  • v is the <em>final</em> velocity of the car;
  • u is the <em>initial</em> velocity of the car; and
  • x is the displacement of the car.

Note that <em>v</em> and <em>u</em> are velocities. Make sure that you include their signs in the calculation.

In this question,

  • a is the unknown;
  • v = -10.9 \; \text{m} \cdot \text{s}^{-2};
  • u = -27.7 \; \text{m} \cdot \text{s}^{-2}; and
  • x = - 105 \; \text{m}.

Apply the <em>timeless</em> suvat equation:

a = \dfrac{v^{2} - u^{2}}{2\; x}\\\phantom{a} = \dfrac{(-10.9)^{2} - (-27.7)^{2}}{2 \times (-105)}\\\phantom{a} = 3.09 \; \text{m} \cdot \text{s}^{-2}.

The value of a is greater than zero, which is reasonable. Velocity of the car is negative, meaning that the car is moving backward. The car now moves to the back at a slower speed. Effectively it accelerates to the front. Its acceleration shall thus be positive.

7 0
3 years ago
How many days does it take for a free to grow?
vovikov84 [41]
Idk what is growing but if it’s a free than c
7 0
3 years ago
A single slit 1.4 mmmm wide is illuminated by 460-nmnm light. Part A What is the width of the central maximum (in cmcm ) in the
mamaluj [8]

Answer:

<h2> 1.643*10⁻⁴cm</h2>

Explanation:

In a single slit experiment, the distance on a screen from the centre point is expressed as y = \frac{\delta m \lambda d}{a} where;

\delta m is the first two diffraction minima = 1

\lambda is light wavelength

d is the distance of diffraction pattern from the screen

a is the width of the slit

Given \lambda = 460-nm = 460*10⁻⁹m

d = 5.0mm = 5*10⁻³m

a = 1.4mm = 1.4*10⁻³m

Substituting this values into the formula above to get width of the central maximum y;

y = 1*460*10⁻⁹ * 5*10⁻³/1.4*10⁻³

y = 2300*10⁻¹²/1.4*10⁻³

y = 1642.86*10⁻⁹

y = 1.643*10⁻⁶m

Converting the final value to cm,

since 100cm = 1m

x = 1.643*10⁻⁶m

x = 1.643*10⁻⁶ * 100

x = 1.643*10⁻⁴cm

Hence, the width of the central maximum in the diffraction pattern on a screen 5.0 mm away is  1.643*10⁻⁴cm

3 0
4 years ago
Other questions:
  • What best describes a lens galaxy
    6·2 answers
  • What shape is the unit cell of ruby?
    15·1 answer
  • Please answer this.
    12·2 answers
  • A small glass bead has been charged to +20 nC. A small metal ball bearing 1.0 cm above the bead feels a 0.018 N downward electri
    15·1 answer
  • Formula for the distance (d) is given by d = rate*time. For example if you are traveling at 60 mph for 3 hours the distance trav
    14·1 answer
  • During a baseball game, a batter hits a high
    12·2 answers
  • A skier weighing 86.2 kg starts from rest and slides down a 32.0-m frictionless slope that is inclined at an angle of 15.0° with
    14·1 answer
  • Please need help on this
    15·1 answer
  • what is the position of centre of curvature for concave and convex mirror show with the help of diagram if you can​
    5·1 answer
  • An 8 Newton wooden block slides across a horizontal wooden floor at constant velocity. What is the magi notice of the force of k
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!