Answer:

Step-by-step explanation:
Let x represents the number of nights Jack worked and y represents the number of nights Diane worked.
1. The number of nights Diane is scheduled to work is no more than four times the number of nights Jack is scheduled to play. Then

2. Diane will work at least 10 times before the concert. Then

3. Jack earns $50 per night that he plays, then he earned $50x in x nights. Diane earns $25 each night she works, then she earns $25y in y nigths. They need at least $750, so

4. We get the following set of constraints to model the problem:

Answer:
The absolute maximum and minimum is
Step-by-step explanation:
We first check the critical points on the interior of the domain using the
first derivative test.


The only solution to this system of equations is the point (0, 4), which lies in the domain.


is a saddle point.
Boundary points - 
Along boundary 





Values of f(x) at these points.

Therefore, the absolute maximum and minimum is
Answer:
1/3
Step-by-step explanation:
y2-y1/x2-x1
4-6/-1-5
-2/-6
1/3
let's notice something, we have a circle with a radius of 12 and one 90° sector is cut off, so only three 90° sectors of the circle are left shaded, so namely the cone will be using 3/4 of that circle.
think of it as, this shaded area is some piece of paper, and you need to pull it upwards and have the cutoff edges meet, and when that happens, you'll end up with a cone-shaped paper cup, and pour in some punch.
now, once we have pulled up the center of the circle to make our paper cup, there will be a circular base, its diameter not going to be 24, it'll be less, but whatever that base is, we know that is going to have the same circumference as those in the shaded area. Well, what is the circumference of that shaded area?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=12 \end{cases}\implies C=2\pi 12\implies C=24\pi \implies \stackrel{\textit{three quarters of it}}{24\pi \cdot \cfrac{3}{4}} \\\\\\ 6\pi \cdot 3\implies 18\pi](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D12%20%5Cend%7Bcases%7D%5Cimplies%20C%3D2%5Cpi%2012%5Cimplies%20C%3D24%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bthree%20quarters%20of%20it%7D%7D%7B24%5Cpi%20%5Ccdot%20%5Ccfrac%7B3%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%206%5Cpi%20%5Ccdot%203%5Cimplies%2018%5Cpi)
well then, the circumference of that circle at the bottom will be 18π, so, what is the diameter of a circle with a circumferenc of 18π?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ C=18\pi \end{cases}\implies 18\pi =2\pi r\implies \cfrac{18\pi }{2\pi }=r\implies 9=r \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{diameter is twice the radius}}{d=18}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20C%3D18%5Cpi%20%5Cend%7Bcases%7D%5Cimplies%2018%5Cpi%20%3D2%5Cpi%20r%5Cimplies%20%5Ccfrac%7B18%5Cpi%20%7D%7B2%5Cpi%20%7D%3Dr%5Cimplies%209%3Dr%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bdiameter%20is%20twice%20the%20radius%7D%7D%7Bd%3D18%7D~%5Chfill)