Answer:
Step-by-step explanation:
If an exponential function is in the form of y = a(b)ˣ,
a = Initial quantity
b = Growth factor
x = Duration
Condition for exponential growth → b > 1
Condition for exponential decay → 0 < b < 1
Now we ca apply this condition in the given functions,
1). 
Here, (1 + 0.45) = 1.45 > 1
Therefore, It's an exponential growth.
2). 
Here, (0.85) is between 0 and 1,
Therefore, it's an exponential decay.
3). y = (1 - 0.03)ˣ + 4
Here, (1 - 0.03) = 0.97
And 0 < 0.97 < 1
Therefore, It's an exponential decay.
4). y = 0.5(1.2)ˣ + 2
Here, 1.2 > 1
Therefore, it's an exponential growth.
For a better understanding of the solution provided here please find the diagram attached.
Please note that in coordinate geometry, the coordinates of the midpoint of a line segment is always the average of the coordinates of the endpoints of that line segment.
Thus, if, for example, the end coordinates of a line segment are
and
then the coordinates of the midpoint of this line segment will be the average of the coordinates of the two endpoints and thus, it will be:

Thus for our question the endpoints are
and
and hence the midpoint will be:


Thus, Option C is the correct option.
Answer:
Use your calculator to find the value of:

Write all the figures on your calculator's display for th
Answer:
x=-6
Step-by-step explanation: