Nature does = environmental stress or changes
Answer:
Choosing protein as macromolecule.
Explanation:
The given environmental changes can lead to structural changes in protein as well:
pH - Several amino acids contain sidechains with practical gatherings that can promptly pick up or lose a proton. Changes in pH would prompt an adjustment in the charge of the amino acids, prompting charge-charge attraction or repilsion between non-interfacing amino parts.
Temperature - High temperatures can prompt protein denaturation. Warmth can upset hydrogen bonding and hydrophobic interactions.
Reduction or oxidation Environment - Some tertiary structure of protein folding is held by disulfide linkages. Reducing agent will lead to unfolding by introducing itself to break disulfide bonds.
Effect of these change: Sequence of amino acid and structure of protein molecule form determines function, any slight change to a protein's structure may result in the protein to become dysfunctional or produce different product.
Answer:
Greenhouse gases from human activities are the most significant driver of observed climate change since the mid-20th century.1 The indicators in this chapter characterize emissions of the major greenhouse gases resulting from human activities, the concentrations of these gases in the atmosphere, and how emissions and concentrations have changed over time. When comparing emissions of different gases, these indicators use a concept called “global warming potential” to convert amounts of other gases into carbon dioxide equivalents.
Explanation:
Why does it matter?
As greenhouse gas emissions from human activities increase, they build up in the atmosphere and warm the climate, leading to many other changes around the world—in the atmosphere, on land, and in the oceans. The indicators in other chapters of this report illustrate many of these changes, which have both positive and negative effects on people, society, and the environment—including plants and animals. Because many of the major greenhouse gases stay in the atmosphere for tens to hundreds of years after being released, their warming effects on the climate persist over a long time and can therefore affect both present and future generations.