Since highest degree of the polynomial is 1, equation is Linear :)
X fourths minus seventeen
Answer:
125feet
Step-by-step explanation:
Given the equation that modeled the height expressed as h = -16t^2 + 80t + 25, where h is the height and t is the time in seconds.
The arrow reaches the maximum height at dh/dt = 0
dh/dt = -32t + 80
0= -32t+80
32t = 80
t = 80/32
t = 2.5secs
substitute t = 2.5 into the formula;
h = -16t^2 + 80t + 25
h = -16(2.5)^2 + 80(2.5) + 25
h = -16(6.25)+225
h = -100+225
h = 125
Hence the maximum height the arrow reaches is 125feet
Since in the above case, the beaker has two sections each with different radius and height, we will divide this problem into two parts.
We will calculate the volume of both the beakers separately and then add them up together to get the volume of the beaker.
Given, π = 3.14
Beaker 1:
Radius (r₁) = 2 cm
Height (h₁) = 3 cm
Volume (V₁) = π r₁² h₁ = 3.14 x 2² x 3 = 37.68 cm³
Beaker 2:
Radius (r₂) = 6 cm
Height (h₂) = 4 cm
Volume (V₂) = π r₂² h₂ = 3.14 x 6² x 4 = 452.16 cm³
Volume of beaker = V₁ + V₂ = 37.68 + 452.16 = 489.84 cm³
I believe the answer is 8