Answer:
a

b

Step-by-step explanation:
From the question we are told that
The proportion that has outstanding balance is p = 0.20
The sample size is n = 15
Given that the properties of the binomial distribution apply, for a randomly selected number(X) of credit card

Generally the probability of finding 4 customers in a sample of 15 who have "maxed out" their credit cards is mathematically represented as

=> 
Here C stand for combination
=>
Generally the probability that 4 or fewer customers in the sample will have balances at the limit of the credit card is mathematically represented as
![P(X \le 4) = [ ^{15}C_0 * (0.20)^0 * (1 - 0.20)^{15-0}]+[ ^{15}C_1 * (0.20)^1 * (1 - 0.20)^{15-1}]+\cdots+[ ^{15}C_4 * (0.20)^4 * (1 - 0.20)^{15-4}]](https://tex.z-dn.net/?f=P%28X%20%5Cle%204%29%20%3D%20%20%5B%20%5E%7B15%7DC_0%20%2A%20%280.20%29%5E0%20%2A%20%281%20-%200.20%29%5E%7B15-0%7D%5D%2B%5B%20%5E%7B15%7DC_1%20%2A%20%280.20%29%5E1%20%2A%20%281%20-%200.20%29%5E%7B15-1%7D%5D%2B%5Ccdots%2B%5B%20%5E%7B15%7DC_4%20%2A%20%280.20%29%5E4%20%2A%20%281%20-%200.20%29%5E%7B15-4%7D%5D)
=> 
Answer:
x=-1/4 thats the answer alternative
Answer:
See explanation below.
Step-by-step explanation:
Note that in △RST and △UVW
- m∠T=180°-m∠R-m∠S;
- m∠W=180°-m∠U-m∠V.
Since ∠R≅∠U and ∠S≅∠V, then ∠T≅∠W.
In ΔRST and ΔUVW:
- ∠S≅∠V (given);
- ∠T≅∠W (proved);
- ST≅VW (given).
ASA theorem that states that if two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.
By ASA theorem ΔRST≅ΔUVW.
9514 1404 393
Answer:
1 < 15 -2a < 7
Step-by-step explanation:
There are a couple of ways you can do this.
1) Put the minimum and maximum values of a into the expression to see what its corresponding values are:
15-2a for a=4:
15-2(4) = 7
15-2a for a=7:
15-2(7) = 1
Then ...
1 < 15-2a < 7
__
2) Solve for a in terms of the value of 15-2a, then impose the limits on a.
x = 15 -2a
2a = 15 -x
a = (15 -x)/2
Now, impose the given limits:
4 < (15 -x)/2 < 7
8 < 15 -x < 14 . . . multiply by 2
-7 < -x < -1 . . . . . . subtract 15
7 > x > 1 . . . . . . . . multiply by -1
1 < 15-2a < 7 . . . . . use x=15-2a
_____
The vertical extent of the attached graph is the range of possible values of 15-2a. It goes from 1 to 7.