hooc are carboxyl groups
your r or amino groups are those unique structures which have different atoms in them. your nh2 groups are your hydrogen atoms
Answer: Reducing agent in the given reaction is
.
Explanation:
A reducing agent is defined as an element which tends to lose electrons to other element leading to an increase in its oxidation number.
In the given reaction, oxidation state of sulfur in
is +2 and
has 0 oxidation state.
In
oxidation state of S is 2.5 and in
oxidation state of I is -1.
Since, an increase in oxidation state of S is occurring from +2 to +2.5. Hence, it is acting as a reducing agent.
Thus, we can conclude that reducing agent in the given reaction is
.
Answer:
Tetrahedral electron geometry and trigonal pyramidal molecular geometry.
Explanation:
The Lewis structure is shown in Figure 1.
The central N atom has three bonding pairs and one lone pair, for <em>four electron groups</em>.
VSEPR theory predicts a tetrahedral electron geometry with bond angles of 109.5°.
We do not count the lone pair in determining the molecular shape.
The molecular geometry is trigonal pyramidal (see Figure 2).
It increases as temperature rises.
Answer: The metal that has a greater reactivity is more easily oxidized.
Explanation:
Oxidation is when the elements lose electrons and increase their oxidation state.
The metals tend to react by losing electrons and form the corresponding cation.
For expample, sodium (an alkalyne metal) loses one elecron and form the cation Na¹⁺ , then this cation combine with an anion and form compounds like NaCl, NaOH. The same do the other alkalyne metals.
Magnesium (an alkalyne earth metal) loses two electrons and form the cation Mg²⁺, then it combines with some anions to form compounds, like MgSO₄, Mg(OH)₂.
So, the easier the metal gets oxidized the greater its reactivity.